A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nano-assembly of multiwalled carbon nanotubes for sensitive voltammetric responses for the determination of residual levels of endosulfan. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endosulfan (ES) is an extensively utilized agricultural pesticide in developing countries, despite its life-threatening toxic effects. In this study, we propose a sensitive detection method against endosulfan using multiwalled carbon nanotubes (MWCNT). Herein, we have conjugated endosulfan with bovine serum albumin (BSA) via zero-length conjugation method and successfully confirmed with various biophysical techniques. Endosulfan antibodies (ES-Ab) were raised in-house, fabricated on electrodes coupled with MWCNT, and optimized to achieve maximum peak current by varying the parameters such as MWCNT and antibody concentration, scan rate, temperature, pH, and response time using voltammetry. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and impedance spectroscopies (IS) were performed for electrochemical analysis. The fabricated immunosensor was also evaluated for its cross reactivity with isodrin, chlorpyrifos, and monocrotophos. The limit of detection for ES was found to be 0.184 ppt in standard buffer (range 0.001 ppt-100 ppb). Additionally, spiked ES in water, animal feed, root, and leaf extract samples were also analyzed and validated by HPLC. To summarize, the fabricated electrode can be used for successful detection of endosulfan in the agricultural sector to elude the lethal effect at large.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138148DOI Listing

Publication Analysis

Top Keywords

multiwalled carbon
8
carbon nanotubes
8
endosulfan
6
nano-assembly multiwalled
4
nanotubes sensitive
4
sensitive voltammetric
4
voltammetric responses
4
responses determination
4
determination residual
4
residual levels
4

Similar Publications