Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Large aperiodic bursts of activations named neuronal avalanches have been used to characterize whole-brain activity, as their presence typically relates to optimal dynamics. Epilepsy is characterized by alterations in large-scale brain network dynamics. Here we exploited neuronal avalanches to characterize differences in electroencephalography (EEG) basal activity, free from seizures and/or interictal spikes, between patients with temporal lobe epilepsy (TLE) and matched controls.

Method: We defined neuronal avalanches as starting when the z-scored source-reconstructed EEG signals crossed a specific threshold in any region and ending when all regions returned to baseline. This technique avoids data manipulation or assumptions of signal stationarity, focusing on the aperiodic, scale-free components of the signals. We computed individual avalanche transition matrices to track the probability of avalanche spreading across any two regions, compared them between patients and controls, and related them to memory performance in patients.

Results: We observed a robust topography of significant edges clustering in regions functionally and structurally relevant for the TLE, such as the entorhinal cortex, the inferior parietal and fusiform area, the inferior temporal gyrus, and the anterior cingulate cortex. We detected a significant correlation between the centrality of the entorhinal cortex in the transition matrix and the long-term memory performance (delay recall Rey-Osterrieth Complex Figure Test).

Significance: Our results show that the propagation patterns of large-scale neuronal avalanches are altered in TLE during the resting state, suggesting a potential diagnostic application in epilepsy. Furthermore, the relationship between specific patterns of propagation and memory performance support the neurophysiological relevance of neuronal avalanches.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.17551DOI Listing

Publication Analysis

Top Keywords

neuronal avalanches
24
memory performance
12
temporal lobe
8
lobe epilepsy
8
avalanches characterize
8
entorhinal cortex
8
neuronal
6
avalanches
6
altered spreading
4
spreading neuronal
4

Similar Publications

The ability to detect and transmit novel events is essential for adaptive behavior in uncertain environments. Here, we investigate how holographically triggered, unanticipated action potentials propagate through the primary visual cortex of resting mice, focusing on pyramidal neuron communication. We find that these novel spikes - uncorrelated with ongoing activity - exert a disproportionately large influence on neighboring neurons, whose response scales as a power law (exponent ∼0.

View Article and Find Full Text PDF

Learning and criticality in a self-organizing model of connectome growth.

Sci Rep

August 2025

Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P.O. Box 49, 1525, Budapest, Hungary.

The exploration of brain networks has reached an important milestone as relatively large and reliable information has been gathered for connectomes of different species. Analyses of connectome data sets reveal that the structural length follows the exponential rule, the distributions of in- and out-node strengths follow heavy-tailed lognormal statistics, while the functional network properties exhibit powerlaw tails, suggesting that the brain operates close to a critical point where computational capabilities and sensitivity to stimulus is optimal. Because these universal network features emerge from bottom-up (self-)organization, one can pose the question of whether they can be modeled via a common framework, particularly through the lens of criticality of statistical physical systems.

View Article and Find Full Text PDF

The brain criticality hypothesis has been a central research topic in theoretical neuroscience for two decades. This hypothesis suggests that the brain operates near the critical point at the boundary between order and disorder, where it acquires its information-processing capabilities. The mechanism that maintains this critical state has been proposed as a feedback system known as self-organized criticality (SOC); brain parameters, such as synaptic plasticity, are regulated internally without external adjustment.

View Article and Find Full Text PDF

Is criticality a unified setpoint of brain function?

Neuron

August 2025

Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:

Brains face selective pressure to optimize computation, broadly defined. This is achieved by mechanisms including development, plasticity, and homeostasis. Is there a universal optimum around which the healthy brain tunes itself, across time and individuals? The criticality hypothesis posits such a setpoint.

View Article and Find Full Text PDF

Genetic contributions to brain criticality and its relationship with human cognitive functions.

Proc Natl Acad Sci U S A

July 2025

State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

Recently, extensive evidence has demonstrated that the brain operates close to a critical state, characterized by dynamic patterns known as neuronal avalanches. The critical state, reflecting the delicate balance between neural excitation and inhibition, offers numerous advantages in information processing. However, the role of genetics in shaping brain criticality is not fully understood.

View Article and Find Full Text PDF