Renewal equations for single-particle diffusion through a semipermeable interface.

Phys Rev E

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diffusion through semipermeable interfaces has a wide range of applications, ranging from molecular transport through biological membranes to reverse osmosis for water purification using artificial membranes. At the single-particle level, one-dimensional diffusion through a barrier with constant permeability κ_{0} can be modeled in terms of so-called snapping out Brownian motion (BM). The latter sews together successive rounds of partially reflected BMs that are restricted to either the left or right of the barrier. Each round is killed (absorbed) at the barrier when its Brownian local time exceeds an exponential random variable parameterized by κ_{0}. A new round is then immediately started in either direction with equal probability. It has recently been shown that the probability density for snapping out BM satisfies a renewal equation that relates the full density to the probability densities of partially reflected BM on either side of the barrier. Moreover, generalized versions of the renewal equation can be constructed that incorporate non-Markovian, encounter-based models of absorption. In this paper we extend the renewal theory of snapping out BM to single-particle diffusion in bounded domains and higher spatial dimensions. In each case we show how the solution of the renewal equation satisfies the classical diffusion equation with a permeable boundary condition at the interface. That is, the probability flux across the interface is continuous and proportional to the difference in densities on either side of the interface. We also consider an example of an asymmetric interface in which the directional switching after each absorption event is biased. Finally, we show how to incorporate an encounter-based model of absorption for single-particle diffusion through a spherically symmetric interface. We find that, even when the same non-Markovian model of absorption applies on either side of the interface, the resulting permeability is an asymmetric time-dependent function with memory. Moreover, the permeability functions tend to be heavy tailed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.014110DOI Listing

Publication Analysis

Top Keywords

single-particle diffusion
12
diffusion semipermeable
8
partially reflected
8
side interface
8
model absorption
8
interface
7
diffusion
6
renewal
5
renewal equations for
4
single-particle
4

Similar Publications

Rethinking the Kohn-Sham inverse problem.

J Chem Phys

September 2025

Theoretical Physics IV, University of Bayreuth, 95447 Bayreuth, Germany.

Density functional theory (DFT) is a cornerstone of modern electronic structure theory. In the Kohn-Sham scheme, the many-electron Schrödinger equation is replaced by a set of effective single-particle equations. Thus, the full complexity of the quantum mechanical many-particle effects is mapped to the exchange-correlation potential vxc(r).

View Article and Find Full Text PDF

Unlabelled: Plasma membrane (PM) lipids and proteins are organized into nanoscale regions called nanodomains, which regulate essential cellular processes by controlling local membrane organization. Despite advances in super-resolution microscopy and single particle tracking, the small size and temporal instability of nanodomains make them difficult to study in living cells. To overcome these challenges, we built fluorescent DNA origami probes that insert into the PM via lipid anchors displayed on the cell.

View Article and Find Full Text PDF

Applications of colloidal nanocrystals in polar solvents often require nanocrystals synthesized in non-polar solvents. However, solvent transfer processes are problematic and deteriorate nanocrystal quality. Here we report syntheses of nanocrystals with nearly universal solvent dispersibility using ligands and solvents with alkoxy repeating units.

View Article and Find Full Text PDF

Topology Determines DNA Origami Diffusion in Intestinal Mucus.

Nano Lett

August 2025

Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Het Kranenveld 14, 5600MB Eindhoven, The Netherlands.

Efficient nanomedicine delivery across mucosal barriers remains a challenge due to the complex and poorly understood relationship between nanoparticle design and mucus transport. Here, we present DNA origami as a platform to investigate how the nanoparticle shape and ligand patterning influence diffusivity in mucus. By decoupling these parameters while maintaining identical material composition, we systematically evaluated the diffusion of rod, icosahedral, and rectangular nanostructures by using high-resolution single-particle tracking.

View Article and Find Full Text PDF

Enhanced Single-Particle Upconversion Imaging via Energy Migration Boosting.

Adv Sci (Weinh)

August 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.

Lanthanide-doped upconversion nanoparticles (UCNPs) are promising bioimaging probes due to their exceptional photostability and minimal background interference. However, their limited single-particle brightness has hindered broader applications. The study addresses this challenge by enhancing energy migration (EM) between sensitizer Yb to improve energy transfer efficiency to emitter Er.

View Article and Find Full Text PDF