Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
CCR4-NOT is a versatile eukaryotic protein complex that controls multiple steps in gene expression regulation from synthesis to decay. In yeast, CCR4-NOT has been implicated in stress response regulation, though this function in other organisms remains unclear. In a genome-wide RNAi screen, we identified a subunit of the CCR4-NOT complex, ccf-1, as a requirement for the C. elegans transcriptional response to cadmium and acrylamide stress. Using whole-transcriptome RNA sequencing, we show that the knockdown of ccf-1 attenuates the activation of a broad range of stress-protective genes in response to cadmium and acrylamide, including those encoding heat shock proteins and xenobiotic detoxification. Consistently, survival assays show that the knockdown of ccf-1 decreases C. elegans stress resistance and normal lifespan. A yeast 2-hybrid screen using a CCF-1 bait identified the homeobox transcription factor PAL-1 as a physical interactor. Knockdown of pal-1 inhibits the activation of ccf-1 dependent stress genes and reduces C. elegans stress resistance. Gene expression analysis reveals that knockdown of ccf-1 and pal-1 attenuates the activation of elt-2 and elt-3 under stress that encode master transcriptional co-regulators of stress response in the C. elegans, and that overexpression of ELT-2 can suppress ccf-1's requirement for gene transcription in a stress-dependent manner. Our findings reveal a new role for CCR4-NOT in the environmental stress response and define its role in stress resistance and longevity in C. elegans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086529 | PMC |
http://dx.doi.org/10.1111/acel.13795 | DOI Listing |