98%
921
2 minutes
20
Background: Understanding where species occur using species distribution models has become fundamental to ecology. Although much attention has been paid to invasive species, questions about climate change related range shifts of widespread insect pests remain unanswered. Here, we incorporated bioclimatic factors and host plant availability into CLIMEX models to predict distributions under future climate scenarios of major cereal pests of the Sitobion grain aphid complex (Sitobion avenae, S. miscanthi, and S. akebiae). Additionally, we incorporated the application of irrigation in our models to explore the relevance of a frequently used management practice that may interact with effects of climate change of the pest distributions.
Results: Our models predicted that the area potentially at high risk of outbreaks of the Sitobion grain aphid complex would increase from 41.3% to 53.3% of the global land mass. This expansion was underlined by regional shifts in both directions: expansion of risk areas in North America, Europe, most of Asia, and Oceania, and contraction of risk areas in South America, Africa, and Australia. In addition, we found that host plant availability limited the potential distribution of pests, while the application of irrigation expanded it.
Conclusion: Our study provides insights into potential risk areas of insect pests and how climate, host plant availability, and irrigation affect the occurrence of the Sitobion grain aphid complex. Our results thereby support agricultural policy makers, farmers, and other stakeholders in their development and application of management practices aimed at maximizing crop yields and minimizing economic losses. © 2023 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.7409 | DOI Listing |
Plant Dis
September 2025
Michigan State University, Department of Plant, Soil and Microbial Sciences, 105 CIPS, East Lansing, Michigan, United States, 48824;
Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.
View Article and Find Full Text PDFNeotrop Entomol
September 2025
Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China.
Successful biological control requires accurate knowledge of the host preference of the released parasitoid. Telenomus remus Nixon (1973) is an effective parasitoid of Spodoptera frugiperda (J.E.
View Article and Find Full Text PDFInsect Biochem Mol Biol
September 2025
Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China. Electronic address:
The diamondback moth (Plutella xylostella), a globally destructive pest, has Brassicaceae as its long-term co-evolved host and can also utilize Fabaceae as an alternative field host. The primary differential factor between these plant families is glucosinolates (GLs). Conventional transcriptome data revealed high midgut expression of glucosinolate sulfatases (GSSs) in response to glucosinolates.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Lanzhou Eco-Agriculture Experimental Research Station, Lanzhou 730000, China; Key Laboratory of Stress Physio
Microplastics are pervasive soil pollutants, yet their role in driving microbial risk in medicinal plant rhizospheres remains poorly understood. Using polyethylene microplastics (PE-MPs) as a model, this study investigated the dose-dependent effects of PE-MPs (0-1000 mg/kg) on the dynamics of antibiotic resistance genes (ARGs), biocide/metal resistance genes (BMRGs), virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs) in the rhizosphere of Angelica sinensis. Results showed that PE-MPs exposure increased the abundance of these genes and pathogens while simplifying the host microbial community structure.
View Article and Find Full Text PDFJ Chem Ecol
September 2025
Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany.
Plant roots are exposed to various organisms that significantly impact plant productivity. Plant-parasitic nematodes (PPNs) such as Meloidogyne spp. and Pratylenchus spp.
View Article and Find Full Text PDF