Article Synopsis

  • Maintaining balance is tough due to the body's slow reaction times, which can lead to falls after disturbances.
  • Wearable exoskeletons can help by reacting faster than our natural responses, but timing is crucial; if they react too fast, they may disrupt our body's ability to maintain balance.
  • Research shows that applying exoskeleton support before our natural reactions can improve balance by 9%, suggesting that these devices should be designed to integrate preemptive sensory feedback for optimal effectiveness.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maintaining balance throughout daily activities is challenging because of the unstable nature of the human body. For instance, a person's delayed reaction times limit their ability to restore balance after disturbances. Wearable exoskeletons have the potential to enhance user balance after a disturbance by reacting faster than physiologically possible. However, "artificially fast" balance-correcting exoskeleton torque may interfere with the user's ensuing physiological responses, consequently hindering the overall reactive balance response. Here, we show that exoskeletons need to react faster than physiological responses to improve standing balance after postural perturbations. Delivering ankle exoskeleton torque before the onset of physiological reactive joint moments improved standing balance by 9%, whereas delaying torque onset to coincide with that of physiological reactive ankle moments did not. In addition, artificially fast exoskeleton torque disrupted the ankle mechanics that generate initial local sensory feedback, but the initial reactive soleus muscle activity was only reduced by 18% versus baseline. More variance of the initial reactive soleus muscle activity was accounted for using delayed and scaled whole-body mechanics [specifically center of mass (CoM) velocity] versus local ankle-or soleus fascicle-mechanics, supporting the notion that reactive muscle activity is commanded to achieve task-level goals, such as maintaining balance. Together, to elicit symbiotic human-exoskeleton balance control, device torque may need to be informed by mechanical estimates of global sensory feedback, such as CoM kinematics, that precede physiological responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169237PMC
http://dx.doi.org/10.1126/scirobotics.adf1080DOI Listing

Publication Analysis

Top Keywords

physiological responses
16
standing balance
12
exoskeleton torque
12
muscle activity
12
balance
9
exoskeletons react
8
react faster
8
faster physiological
8
responses improve
8
improve standing
8

Similar Publications

Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability.

View Article and Find Full Text PDF

The explanation for how acutely stressful experiences could result in proximal health outcomes has been lacking in occupational health research. Although scholars have argued that individual personality and affect could worsen health behaviors, we believe that these qualities also could intensify the experience of acute stressors, potentially explaining why acutely stress encounters result in poor health outcomes for some people, but not others. Our study examines three individual differences - worry, negative affect, and positive affect - that are relevant to differential stress anticipation, reactivity, and recovery.

View Article and Find Full Text PDF

Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.

View Article and Find Full Text PDF

Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.

View Article and Find Full Text PDF