Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Exercise exerts many health benefits by directly inducing molecular alterations in physically utilized skeletal muscle. Molecular adaptations of subcutaneous adipose tissue (SCAT) might also contribute to the prevention of metabolic diseases.

Aim: To characterize the response of human SCAT based on changes in transcripts and mitochondrial respiration to acute and repeated bouts of exercise in comparison to skeletal muscle.

Methods: Sedentary participants (27 ± 4 yrs) with overweight or obesity underwent 8-week supervised endurance exercise 3×1h/week at 80% VO2peak. Before, 60 min after the first and last exercise bout and 5 days post intervention, biopsies were taken for transcriptomic analyses and high-resolution respirometry (n = 14, 8 female/6 male).

Results: In SCAT, we found 37 acutely regulated transcripts (FC > 1.2, FDR < 10%) after the first exercise bout compared to 394, respectively, in skeletal muscle. Regulation of only 5 transcripts overlapped between tissues highlighting their differential response. Upstream and enrichment analyses revealed reduced transcripts of lipid uptake, storage and lipogenesis directly after exercise in SCAT and point to β-adrenergic regulation as potential major driver. The data also suggest an exercise-induced modulation of the circadian clock in SCAT. Neither term was associated with transcriptomic changes in skeletal muscle. No evidence for beigeing/browning was found in SCAT along with unchanged respiration.

Conclusions: Adipose tissue responds completely distinct from adaptations of skeletal muscle to exercise. The acute and repeated reduction in transcripts of lipid storage and lipogenesis, interconnected with a modulated circadian rhythm, can counteract metabolic syndrome progression toward diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113153PMC
http://dx.doi.org/10.1038/s41366-023-01271-yDOI Listing

Publication Analysis

Top Keywords

adipose tissue
8
skeletal muscle
8
exercise
5
acute long-term
4
long-term exercise
4
exercise adaptation
4
adaptation adipose
4
tissue skeletal
4
muscle humans
4
humans matched
4

Similar Publications

The journal retracts the article titled "Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A Receptor Ligands" [...

View Article and Find Full Text PDF

Introduction: Visceral adipose tissue (VAT) is a significant driver for metabolic disease risk. Low dose computed tomography (LDCT) imaging obtained for other clinical indications is useful for the opportunistic screening of osteoporosis and demonstrates additional potential for the screening of metabolic risk through the measurement of visceral adipose tissue. In this study, we explored LDCT-derived VAT and calculated VAT thresholds indicative of elevated metabolic risk in a population cohort of Chinese men and women.

View Article and Find Full Text PDF

Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF