98%
921
2 minutes
20
Per-fluoroalkyl substances (PFASs) have been widely detected in farmland soils and are understood to pose toxicological threats to soil microbiomes and crop safety. Meanwhile, farmland ecosystems have experienced increasing nitrogen loading caused by soil fertilization. Yet it is still unclear how nitrogen additions affect soil's microbial responses to PFASs. In this study, using a laboratory-based ecological experiment, we assessed the microbial availability of PFASs in soils receiving ammonium, nitrate, and urea nitrogen amendments by quantifying the translocation factors of PFASs from soil particle to soil extracellular polymeric substances (EPS). Our results showed that nitrogen, specifically ammonium, significantly increased the PFASs' microbial availability (p < 0.05). Second, nitrogen fertilization in PFASs-polluted soils decreased the microbial community diversity and stability at the structural, species, and functional levels (p < 0.05). For soil microbial activities, nitrogen enhanced the activity of superoxide dismutase (SOD) while it inhibited the catalase (CAT) and peroxidase (POD) (p < 0.01). Congruently, PFASs, as well as the nitrate and nitrite nitrogen, were shown to be the predominant abiotic drivers regulating the soil fungal succession (p < 0.05), while bacteria were mostly regulated by dissolved organic carbon (DOC) (p < 0.01). Furthermore, we revealed that the nitrogen cycling gene hmp (dominates the transformation from NO to NO) was the hub gene integrating the microbially available PFASs and the soil nitrogen cycling processes (p < 0.01), indicating that hmp could be the core regulator affecting the accumulation of PFASs in soil EPS. Our study highlighted that decreasing ammonia's amendments could mitigate China's national initiatives to reduce nitrogen fertilization in farmlands, reduce the PFASs' availability to the soil microbiome, and protect the microbial community stability in soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138110 | DOI Listing |
PLoS One
September 2025
Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Other Health Sciences, University of Gondar, Gondar, Ethiopia.
Foodborne diseases pose a significant public health challenge worldwide. The increasing availability of edible oils in the market, combined with Ethiopia's lack of stringent quality control and regulatory oversight, raises concerns about their safety. This inadequacy in regulation may contribute to microbial contamination, leading to potential public health risks.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2025
Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
Microbial spoilage and oxidation are significant causes of food deterioration, contributing to food waste of up to 30%. To mitigate these losses, active food packaging is an effective solution. Considering the excellent properties of nanofibers produced by electrospinning, integrating active food packaging functionality with nanofiber technology offers an ideal approach enhancing preservation.
View Article and Find Full Text PDF