Development of Cork Biocomposites Enriched with Chitosan Targeting Antibacterial and Antifouling Properties.

Molecules

3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-01

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The demand for bio-based and safer composite materials is increasing due to the growth of the industry, human population, and environmental concerns. In this framework, sustainable and safer cork-polymer composites (CPC), based on green low-density polyethylene (LDPE) were developed using melt-based technologies. Chitosan and polyethylene-graft-maleic anhydride (PE-g-MA) were employed to enhance the CPC's properties. The morphology, wettability, mechanical, thermal, and antibacterial properties of the CPC against () and () were examined. The CPC showed improved stiffness when compared with that of the LDPE matrix, preferably when combined with chitosan and PE-g-MA (5 wt. %), reinforcing the stiffness (58.8%) and the strength (66.7%). Chitosan also increased the composite stiffness and strength, as well as reduced the surface hydrophilicity. The CPCs' antibacterial activity revealed that cork significantly reduces the biofilm on the polymer matrix. The highest biofilm reduction was found with CPC containing cork and 5 wt. % chitosan for both (54% reduction) and (36% reduction), confirming their potential to extend the lifespan of products for packaging and healthcare, among other applications. This work leads to the understanding of the factors that influence biofilm formation in cork composites and provides a strategy to reinforce their behavior using chitosan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921838PMC
http://dx.doi.org/10.3390/molecules28030990DOI Listing

Publication Analysis

Top Keywords

chitosan
6
development cork
4
cork biocomposites
4
biocomposites enriched
4
enriched chitosan
4
chitosan targeting
4
targeting antibacterial
4
antibacterial antifouling
4
antifouling properties
4
properties demand
4

Similar Publications

The multifunctional systems presented here introduce an innovative and deeply thought-out approach to the more effective and safer use of temozolomide (TMZ) in treating glioma. The developed hydrogel-based flakes were designed to address the issues of local GBL therapy, bacterial neuroinfections, and the bleeding control needed during tumor resection. The materials obtained comprise TMZ and vancomycin (VANC) loaded into cyclodextrin/polymeric capsules and embedded into gelatin/hyaluronic acid/chitosan-based hydrogel films cross-linked with genipin.

View Article and Find Full Text PDF

B cells are critical components of the adaptive immune system that proliferate and differentiate within the secondary lymphoid organs upon recognition of antigens and engagement of T cells. Traditional two-dimensional (2D) cell cultures fall short of replicating the intricate structures and dynamic evolution of three-dimensional (3D) environments found in lymphoid organs, prompting the development of more physiologically pertinent models. Our approach employs -hexanoyl glycol chitosan (HGC) coated ultra-low attachment (ULA) lattice plates to cultivate a 3D co-culture of CD40L-expressing MS5 stromal cells and naïve B cells derived from the peripheral blood mononuclear cells (PBMCs) of healthy human donors.

View Article and Find Full Text PDF

The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).

View Article and Find Full Text PDF

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.

View Article and Find Full Text PDF

The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.

View Article and Find Full Text PDF