98%
921
2 minutes
20
Several studies have shown that spatial information is encoded using two types of reference systems: egocentric (body-based) and/or allocentric (environment-based). However, most studies have been conducted in static situations, neglecting the fact that when we explore the environment, the objects closest to us are also those we encounter first, while those we encounter later are usually those closest to other environmental objects/elements. In this study, participants were shown with two stimuli on a computer screen, each depicting a different geometric object, placed at different distances from them and an external reference (i.e., a bar). The crucial manipulation was that the stimuli were shown sequentially. After participants had memorized the position of both stimuli, they had to indicate which object appeared closest to them (egocentric judgment) or which object appeared closest to the bar (allocentric judgment). The results showed that egocentric judgements were facilitated when the object closest to them was presented first, whereas allocentric judgements were facilitated when the object closest to the bar was presented second. These results show that temporal order has a different effect on egocentric and allocentric frames of reference, presumably rooted in the embodied way in which individuals dynamically explore the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917670 | PMC |
http://dx.doi.org/10.3390/jcm12031132 | DOI Listing |
PLoS Comput Biol
September 2025
University of Chinese Academy of Sciences, Beijing, China.
The divergence in folding pathways between RNA co-transcriptional folding (CTF) and free folding (FF) is crucial for understanding dynamic functional regulation of RNAs. Here, we developed a simplified all-atom molecular dynamics framework to systematically compare the folding kinetics of an RNA hairpin (PDB:1ZIH) under CTF and FF conditions. By analyzing over 800 microseconds of simulated trajectory, we found that despite convergence to identical native conformations across CTF simulations (with varied transcription rates) and FF simulations, they exhibit distinct preferences for the folding pathways defined by the order of base-pair formation.
View Article and Find Full Text PDFPsychol Rev
September 2025
Neural Computation Group, Max-Planck Institute for Human Cognitive and Brain Sciences.
It has been suggested that episodic memory relies on the well-studied machinery of spatial memory. This influential notion faces hurdles that become evident with dynamically changing spatial scenes and an immobile agent. Here I propose a model of episodic memory that can accommodate such episodes via temporal indexing.
View Article and Find Full Text PDFJ Neuroimaging
September 2025
Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.
Background And Purpose: Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.
View Article and Find Full Text PDFFungal Biol
October 2025
Faculty of Biology and Nature Protection, University of Rzeszów, Zelwerowicza 4, 35 - 601, Rzeszów, Poland. Electronic address:
The qualitative and quantitative composition of airborne fungal spores results from the interaction of fungal biology, environmental factors, particularly climate, weather conditions, vegetation, land cover and human activity. Continuous aeromycological monitoring is rarely conducted due to the challenges associated with identifying the abundance of spores present in the air. In southeastern Poland such studies have been conducted only occasionally.
View Article and Find Full Text PDFNeuroimage
September 2025
The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China; Brain-Computer Interface & Brain-Inspired Intelligence Key Laboratory of Sichuan Province, University of Electronic
Functional magnetic resonance imaging (fMRI) opens a window on observing spontaneous activities of the human brain in vivo. However, the high complexity of fMRI signals makes brain functional representations intractable. Here, we introduce a state decomposition method to reduce this complexity and decipher individual brain functions at multiple levels.
View Article and Find Full Text PDF