Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study uses machine learning to perform the hearing test (audiometry) processes autonomously with EEG signals. Sounds with different amplitudes and wavelengths given to the person tested in standard hearing tests are assigned randomly with the interface designed with MATLAB GUI. The person stated that he heard the random size sounds he listened to with headphones but did not take action if he did not hear them. Simultaneously, EEG (electro-encephalography) signals were followed, and the waves created in the brain by the sounds that the person attended and did not hear were recorded. EEG data generated at the end of the test were pre-processed, and then feature extraction was performed. The heard and unheard information received from the MATLAB interface was combined with the EEG signals, and it was determined which sounds the person heard and which they did not hear. During the waiting period between the sounds given via the interface, no sound was given to the person. Therefore, these times are marked as not heard in EEG signals. In this study, brain signals were measured with Brain Products Vamp 16 EEG device, and then EEG raw data were created using the Brain Vision Recorder program and MATLAB. After the data set was created from the signal data produced by the heard and unheard sounds in the brain, machine learning processes were carried out with the PYTHON programming language. The raw data created with MATLAB was taken with the Python programming language, and after the pre-processing steps were completed, machine learning methods were applied to the classification algorithms. Each raw EEG data has been detected by the Count Vectorizer method. The importance of each EEG signal in all EEG data has been calculated using the TF-IDF (Term Frequency-Inverse Document Frequency) method. The obtained dataset has been classified according to whether people can hear the sound. Naïve Bayes, Light Gradient Strengthening Machine (LGBM), support vector machine (SVM), decision tree, k-NN, logistic regression, and random forest classifier algorithms have been applied in the analysis. The algorithms selected in our study were preferred because they showed superior performance in ML and succeeded in analyzing EEG signals. Selected classification algorithms also have features of being used online. Naïve Bayes, Light Gradient Strengthening Machine (LGBM), support vector machine (SVM), decision tree, k-NN, logistic regression, and random forest classifier algorithms were used. In the analysis of EEG signals, Light Gradient Strengthening Machine (LGBM) was obtained as the best method. It was determined that the most successful algorithm in prediction was the prediction of the LGBM classification algorithm, with a success rate of 84%. This study has revealed that hearing tests can also be performed using brain waves detected by an EEG device. Although a completely independent hearing test can be created, an audiologist or doctor may be needed to evaluate the results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914437PMC
http://dx.doi.org/10.3390/diagnostics13030575DOI Listing

Publication Analysis

Top Keywords

eeg signals
20
machine learning
16
eeg
13
eeg data
12
light gradient
12
gradient strengthening
12
strengthening machine
12
machine lgbm
12
machine
9
learning methods
8

Similar Publications

Machine learning based classification of imagined speech electroencephalogram data from the amplitude and phase spectrum of frequency domain EEG signal.

Biomed Phys Eng Express

September 2025

electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.

Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.

View Article and Find Full Text PDF

Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.

View Article and Find Full Text PDF

Common neural choice signals reflect accumulated evidence, not confidence.

Cereb Cortex

August 2025

Brain and Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.

Centro-parietal electroencephalogram signals (centro-parietal positivity and error positivity) correlate with the reported level of confidence. According to recent computational work these signals reflect evidence which feeds into the computation of confidence, not directly confidence. To test this prediction, we causally manipulated prior beliefs to selectively affect confidence, while leaving objective task performance unaffected.

View Article and Find Full Text PDF

Aim: To evaluate the relationship between amplitude-integrated electroencephalography (aEEG), general movement assessment (GMA) and later motor outcome in preterm infants.

Methods: This retrospective study analysed data from 274 very preterm infants born at Innsbruck Medical University Hospital. aEEG was performed within 72 h of birth and weekly for the first month.

View Article and Find Full Text PDF

Concurrent recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) signals reveals cross-scale neurovascular dynamics crucial for explaining fundamental linkages between function and behaviors. However, MRI scanners generate artifacts for EEG detection. Despite existing denoising methods, cabled connections to EEG receivers are susceptible to environmental fluctuations inside MRI scanners, creating baseline drifts that complicate EEG signal retrieval from the noisy background.

View Article and Find Full Text PDF