Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DWI is an imaging technique commonly used for the assessment of acute ischemia, inflammatory disorders, and CNS neoplasia. It has several benefits since it is a quick, easily replicable sequence that is widely used on many standard scanners. In addition to its normal clinical purpose, DWI offers crucial functional and physiological information regarding brain neoplasia and the surrounding milieu. A narrative review of the literature was conducted based on the PubMed database with the purpose of investigating the potential role of DWI in the neuro-oncology field. A total of 179 articles were included in the study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913305PMC
http://dx.doi.org/10.3390/cancers15030618DOI Listing

Publication Analysis

Top Keywords

diffusion weighted
4
weighted imaging
4
imaging neuro-oncology
4
neuro-oncology diagnosis
4
diagnosis post-treatment
4
post-treatment changes
4
changes advanced
4
advanced sequences-an
4
sequences-an updated
4
updated review
4

Similar Publications

Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.

Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.

View Article and Find Full Text PDF

Mean apparent propagator MRI (MAP-MRI) quantifies subtle alterations in tissue microstructure noninvasively and provides a more nuanced and comprehensive assessment of tissue architectural and structural integrity compared with other diffusion MRI techniques. We investigate the sensitivity of MAP-MRI-derived quantitative imaging biomarkers to detect previously unseen microstructural damage in patients with mild traumatic brain injuries (mTBI), whose clinical scans otherwise appeared normal. We developed and validated an MAP-MRI data processing pipeline for analyzing diffusion-weighted images for use in healthy controls and mTBI patients whose longitudinal scans were obtained from the GE/NFL/mTBI MRI database.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) patients experience shifts between non-seizing and seizing brain states, but the structural networks underlying these transitions remain undefined and poorly characterized. We detected dynamic brain states in resting-state fMRI and constructed linked structural networks utilizing multi-shell diffusion-weighted MR data. Leveraging network control theory, we interrogated the structural data for all possible brain state transitions, identifying those requiring abnormal levels of transition energy (low or high) in TLE compared to matched healthy participants (n's = 25).

View Article and Find Full Text PDF

Balanced biocompatibility in high-viscosity hydroxypropyl methylcellulose-based sponge containing nanoconfined silver citrate nanoparticles.

Int J Biol Macromol

September 2025

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China. Electronic address:

Balancing antibacterial efficacy, mechanical integrity, and biocompatibility remains a critical challenge in drug release systems for wound dressings. Many antimicrobial agents exhibit inherent cytotoxicity, compromising cell viability and tissue compatibility. To address this, an Absorbable Gelatine Sponge was synthetised based on high-viscosity hydroxypropyl methylcellulose (HPMC K100M) and loaded with silver citrate nanorods (AgCit), which confine silver nanoparticles to enable controlled ion release.

View Article and Find Full Text PDF

Background And Objective: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognised cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.

View Article and Find Full Text PDF