Diversity and distribution of fish in the Qilian Mountain Basin.

Biodivers Data J

College of Ecology, Lanzhou University, Lanzhou, China College of Ecology, Lanzhou University Lanzhou China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Qilian Mountain Basin, on the north-eastern edge of the Qinghai-Tibet Plateau (QTP), supports a high diversity of native and endemic fish. However, the detailed species inventory and distribution patterns concerning fish in the whole Basin remain unknown, which hinders the conservation of biodiversity and assessment of ecological health. We compiled a comprehensive species richness and distribution database of freshwater fish in the Qilian Mountain Basin, based on field investigations and exhaustive data collection from 50 rivers or lakes. Then, we elucidated a distribution pattern using clustering and ordination analyses based on a β matrix with species presence/absence data. A total of 79 freshwater fish species within eight orders, 17 families and 42 genera were recorded. The Qilian Mountain Basin could be grouped into six systems, which match the six Basins (i.e. Heihe River Basin, HHR; Qaidam Basin, QDM; Qinghai Lake Basin, QHL; Shule River Basin, SLR; Shiyang River Basin, SYR; Yellow River Basin, YR), based on the fish distribution pattern. Additionally, the spatial pattern of species distribution showed the distance decay of taxonomic similarity. Our results demonstrate that riverine connectivity resulting from historical processes plays a vital role in shaping the freshwater ichthyofauna of High Central Asia. These findings will be valuable for future systematic conservation of fish in the Qilian Mountain Basin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9848581PMC
http://dx.doi.org/10.3897/BDJ.10.e85992DOI Listing

Publication Analysis

Top Keywords

qilian mountain
20
mountain basin
20
river basin
16
fish qilian
12
basin
12
freshwater fish
8
basin based
8
distribution pattern
8
fish
7
qilian
5

Similar Publications

Fifteen years of grazing exclusion reshapes vegetation structure and landscape connectivity across alpine ecosystems in the Qilian Mountain, Northwestern China.

J Environ Manage

September 2025

Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China. Electron

High-altitude and high-latitude ecosystems are among the most vulnerable to climate change and human disturbance, with widespread degradation threatening their role in water regulation, biodiversity conservation, and carbon sequestration. Livestock-exclusion enclosure is widely applied for alpine restoration, yet its ecological outcomes remain poorly understood across elevation gradients and ecosystem types. To address this, a 15-year grazing-exclusion experiment was conducted in a vertical transect spanning 2980-4164 m a.

View Article and Find Full Text PDF

Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types-including four monocultures and two mixed-species stands-to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types.

View Article and Find Full Text PDF

Topographic effects on vegetation phenology in response to climate change on the southern slope of Qilian Mountains, Northwest China.

Ying Yong Sheng Tai Xue Bao

July 2025

Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China.

The southern slope of the Qilian Mountains is a typical mountain ecosystem. To understand the vegetation phenological response mechanisms under the interaction between complex terrain and climate change is of significance in revealing ecological adaptability laws. Based on MODIS NDVI data from 2002 to 2020, combined with topographic and meteorological datasets, we used correlation analysis and structural equation modeling to quantitatively assess the role of topography in mediating vegetation phenological responses to climate change.

View Article and Find Full Text PDF

Multi-method estimation of evapotranspiration and influencing factors of desert steppe in the shallow mountainous area of Qilian Mountains, China.

Ying Yong Sheng Tai Xue Bao

July 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

To clarify the mechanism of evapotranspiration in desert steppe, we investigated the evapotranspiration and its components in the shallow mountainous area of the Qilian Mountains with five methods, including eddy covariance, lysimeter, and Priestley-Taylor (P-T), Penman-Monteith (P-M), and Shuttleworth-Wallace (S-W) models. We further analyzed the multi-timescale characteristics of evapotranspiration and its components in the Qilian Mountains, and the influencing factors. The results showed that the eddy covariance method was more accurate than the lysimeter.

View Article and Find Full Text PDF

Accumulation, transport and potential sources of chemical elements in the soil-mushroom systems in a temperate forest.

Environ Pollut

August 2025

College of Agriculture and Ecological Engineering, Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, 734000, China.

Mushrooms, as key components of forest ecosystems, have the ability to accumulate chemical elements (CMs) but their biogeochemical processes and element sources remain poorly understood. This study investigated the contents and sources of K, Ca, Na, Mg, Fe, Cu, Zn, Mn, Ni, Pb, Cd, As, Al, Co, and Ba in 34 mushroom species and their rhizosphere soils (RS) from the central Qilian Mountains, and the associated health and ecological risks. The results revealed that Al, Fe, and Zn exhibited the highest contents among the studied tissues, including the pileus, stipe, and whole mushrooms, ranging from 53.

View Article and Find Full Text PDF