Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In compartmentalized systems, chemical reactions may proceed in differing ways even in adjacent compartments. In compartmentalized nanosystems, the reaction behaviour may deviate from that observed on the macro- or mesoscale. In situ studies of processes in such nanosystems meet severe experimental challenges, often leaving the field to theoretical simulations. Here, a rhodium nanocrystal surface consisting of different nm-sized nanofacets is used as a model of a compartmentalized reaction nanosystem. Using field emission microscopy, different reaction modes are observed, including a transition to spatio-temporal chaos. The transitions between different modes are caused by variations of the hydrogen pressure modifying the strength of diffusive coupling between individual nanofacets. Microkinetic simulations, performed for a network of 52 coupled oscillators, reveal the origins of the different reaction modes. Since diffusive coupling is characteristic for many living and non-living compartmentalized systems, the current findings may be relevant for a wide class of reaction systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911747PMC
http://dx.doi.org/10.1038/s41467-023-36434-yDOI Listing

Publication Analysis

Top Keywords

reaction nanosystem
8
compartmentalized systems
8
reaction modes
8
diffusive coupling
8
reaction
6
compartmentalized
5
emergence chaos
4
chaos compartmentalized
4
compartmentalized catalytic
4
catalytic reaction
4

Similar Publications

Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.

View Article and Find Full Text PDF

Photosensitization has emerged as a versatile tool to facilitate access to excited states under mild conditions, allowing for efficient and selective photochemical transformations. Herein, we report a very simple molecule, coronene bisimide (CBI), as a potent visible-light photosensitizer featuring a high extinction coefficient with a broadband absorption spanning from ultraviolet to green region of the visible spectrum, along with a long-lived triplet state generated via efficient intersystem crossing (ISC). Utilizing the triplet-triplet energy transfer (TTEnT) strategy, CBI catalyzes diverse reactions under green light irradiation.

View Article and Find Full Text PDF

Considering the complexities of electronics waste management to meet the requirements of digital-age technologies, this article underscores the pressing need for eco-friendly, economical, and sustainable engineering solutions. Here, it uniquely focuses on bacteriogenic metallic and semiconducting nano-systems as a promising yet underexplored solution for sustainable materials innovation. Unlike conventional green nanofabrication methods involving plants or eukaryotic microbes, bacteria possess numerous merits for fabrication, including ease of cultivation, a wide spectrum of genera, abundance, prompt cell division efficacy, genetic elasticity, and high bio-reduction/oxidation efficacy that make them highly adaptable platforms for engineered nanostructures.

View Article and Find Full Text PDF

In acid proton exchange membrane water electrolysis (PEMWE), exploring highly active and durable oxygen evolution reaction (OER) electrocatalysts remains a great challenge. Herein, a durable Ru and Ir co-doped spinel cobalt oxide (RuIr-CoO) nanoflower electrocatalyst with low precious metal loading (Ru 2.7 wt% and Ir 0.

View Article and Find Full Text PDF

Sustained, Reversible, and Adaptive Non-Equilibrium Steady States of a Dissipative DNA-Based System.

Angew Chem Int Ed Engl

August 2025

Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, C/ Martí i Franquès, 1-11, Barcelona, 08028, Spain.

Inspired by nature, researchers have developed several chemical fuel-driven supramolecular systems aimed at achieving improved kinetic control over their formation and functions. Alongside, DNA-based systems regulated by energy-dissipating mechanisms have been reported. However, the majority of these systems rely on batchwise additions of chemical fuels to closed reactors, resulting in transient non-equilibrium states that differ fundamentally from the sustained and highly adaptable non-equilibrium steady states (NESS) maintained by living systems through continuous energy dissipation.

View Article and Find Full Text PDF