Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
On-surface synthesis of phenylenes is a promising strategy to form extended π-conjugated frameworks but normally lacks selectivity in achieving uniform products. Herein we demonstrate that the debromination reaction of 2,3-dibromophenazine (DBPZ) on Au(111) and Ag(111) surfaces can vary significantly considering the involvement of metal-organic hybrids (MOHs). On Au(111), [2 + 2] and [2 + 2 + 2] cycloadditions facilitate instantaneously upon the debromination occurring, while on Ag(111), several MOHs have been observed under sequential thermal annealing, leading to finally the uniform [2 + 2] cycloaddition product exclusively. By means of scanning tunneling microscopy (STM) and bond-resolved atomic force microscopy (BR-AFM), we have unambiguously depicted the chemical structure of related reaction intermediates and unraveled the undocumented role of hierarchical evolution of MOHs in steering the chemical selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c03913 | DOI Listing |