Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence ("AI") in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system's decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning ("VADER"), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations ("LIME") have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892668PMC
http://dx.doi.org/10.1007/s11042-023-14432-yDOI Listing

Publication Analysis

Top Keywords

sentiment analysis
8
social media
8
artificial intelligence
8
explaining sentiment
4
analysis social
4
media texts
4
texts visualization
4
visualization today
4
today artificial
4
intelligence achieving
4

Similar Publications

Background: Lesbian, gay, bisexual, transgender, queer/questioning, intersex, asexual (LGBTQIA+) researchers and participants frequently encounter hostility in virtual environments, particularly on social media platforms where public commentary on research advertisements can foster stigmatization. Despite a growing body of work on researcher virtual hostility, little empirical research has examined the actual content and emotional tone of public responses to LGBTQIA+-focused research recruitment.

Objective: This study aimed to analyze the thematic patterns and sentiment of social media comments directed at LGBTQIA+ research recruitment advertisements, in order to better understand how virtual stigma is communicated and how it may impact both researchers and potential participants.

View Article and Find Full Text PDF

The COVID-19 pandemic has revealed the complex interplay between national self-interest and global cooperation. Media communication can contribute to the formation of national identity and promote nationalist themes, particularly in times of crisis. Media portrayals of the nation during a pandemic are informative, since nationalism, specifically health nationalism, may undermine the popular appetite for and effectiveness of global response efforts.

View Article and Find Full Text PDF

Diagnostic and transition accuracy of natural language processing in high risk for psychosis individuals: A systematic review.

Asian J Psychiatr

September 2025

Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Translational Psychiatry Laboratory (Psiquislab), Faculty of Medicine, Universidad de Chile, Santiago, Chile; Millennium Nucleus to Improve the Mental Health of Adolescents and Youths (IMHAY), San

Background: Schizophrenia spectrum disorders often emerge in adolescence or early adulthood and are a leading cause of global disability. Early identification of clinical high‑risk for psychosis (CHR‑P) can reduce comorbidity and shorten untreated psychosis duration, yet clinician‑administered tools (e.g.

View Article and Find Full Text PDF

-Aspect-Based Sentiment Analysis (ABSA) is considered a unique variant, which intends to identify the opinions regarding delicate topics. However, it is a neglected topic of study, ABSA attempts to find out the sentiment polarity on particular characteristics within statements, enabling more precise mining of consumers' emotional polarities regarding various aspects. The conversion of the conventional rating-aided recommendation approach into an effective aspect-aided procedure is made easier by this evaluation.

View Article and Find Full Text PDF

Algorithms of emotion: A hybrid NLP analysis of neurodivergent Reddit communities".

Acta Psychol (Amst)

September 2025

Management Department, Faculty of Economics, Administrative, and Social Sciences, Alanya University, 07400, Alanya, Antalya, Turkiye. Electronic address:

Online communities such as Reddit offer neurodivergent individuals a unique space to express emotions, seek psychosocial support, and negotiate identity outside conventional social constraints. Understanding how these communities articulate and structure emotional discourse is essential for inclusive technology design. This study employed a hybrid natural language processing (NLP) framework that integrates lexicon-based sentiment analysis (VADER) with transformer-based topic modeling (BERTopic).

View Article and Find Full Text PDF