High-stiffness, fast-crosslinking, cartilage matrix bioinks.

J Biomech

Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA. Electronic address:

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scaffolds derived from cartilage extracellular matrix may contain intrinsic chondroinductivity and have promise for cartilage regeneration. Cartilage is typically ground into devitalized particles (DVC) and several groups have pioneered innovative methods to rebuild the DVC into a new scaffold. However, challenges remain regarding the fluid and solid biomechanics of cartilage-based scaffolds in achieving 1) high mechanical performance akin to native cartilage and 2) easy surgical delivery/retention. Fortunately, photocrosslinking bioinks may benefit clinical translation: paste-like/injectable precursor rheology facilitates surgical placement, and in situ photocrosslinking enables material retention within any size/shape of defect. While solubilized DVC has been modified with methacryloyls (MeSDVC), MeSDVC is limited by slow crosslinking times (e.g., 5-10 min). Therefore, in the current study, we fabricated a pentenoate-modified SDVC (PSDVC), to enable a faster crosslinking reaction via a thiol-ene click chemistry. The crosslinking time of the PSDVC was faster (∼1.7 min) than MeSDVC (∼4 min). We characterized the solid and fluid mechanics/printabilities of PSDVC, pentenoate-modified hyaluronic acid (PHA), and the PHA or PSDVC with added DVC particles. While the addition of DVC particles enhanced the printed shape fidelity of PHA or PSDVC, the increased clogging decreased the ease of printing and cell viability after bioprinting, and future refinement is needed for DVC-containing bioinks. However, the PSDVC alone had a paste-like rheology/good bioprintability prior to crosslinking, the fastest crosslinking time (i.e., 1.7 min), and the highest compressive modulus (i.e., 3.12 ± 0.41 MPa) after crosslinking. Overall, the PSDVC may have future potential as a translational material for cartilage repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2023.111471DOI Listing

Publication Analysis

Top Keywords

crosslinking time
8
pha psdvc
8
dvc particles
8
psdvc
7
cartilage
6
crosslinking
6
dvc
5
high-stiffness fast-crosslinking
4
fast-crosslinking cartilage
4
cartilage matrix
4

Similar Publications

In-situ extrusion 3D printing with tea polyphenol crosslinking for Hyaluronic acid sodium salt -based composite hydrogel scaffolds.

Colloids Surf B Biointerfaces

September 2025

School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.

High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.

View Article and Find Full Text PDF

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Short-Time Relaxation and Anomalous Diffusion in Dynamic Covalent Networks.

ACS Macro Lett

September 2025

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.

Introducing dynamic covalent chemistries into polymer networks allows access to complex linear viscoelasticity, owing to the reversible nature of the dynamic bonds. While this macroscopic mechanical behavior is influenced by the dynamic exchange of these chemistries, connecting the microscopic dynamics to the bulk properties is hindered by the time scale conventional techniques can observe. Here, light scattering passive microrheology is applied to probe short-time dynamics of dynamic covalent networks that consist of telechelic benzalcyanoacetate (BCA) Michael acceptors and thiol-functionalized cross-linkers.

View Article and Find Full Text PDF

Background: The prevalence of keratoconus in New Zealand is higher compared to the global prevalence of 1.38 per 1000, with Māori and Pacific Islander being over-represented. The form of keratoconus in New Zealand has been shown to have a more rapid progression of disease.

View Article and Find Full Text PDF