Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A facile and rapid fluorescence sensor array based on Tb (III) and Eu (III) doped Zr (IV) metal-organic frameworks was proposed for Chinese green tea discrimination. According to large porosity of Tb@UiO-66-(COOH) and Eu@UiO-66-(COOH), phenolic hydroxyl groups of tea polyphenols could coordinate with free carboxylic acid groups and was captured into the pores, which led to the disturbance of electronic structure of ligand and inhibited the energy transfer efficiency from ligand to Tb (III) and Eu (III) center, causing the fluorescence quenching effect. Based on Hierarchy Cluster Analysis and Linear Discrimination Analysis, the fluorescence sensor array was employed for successful tea polyphenols classification through the analysis of different fluorescence quenching effect to tea polyphenols. Green tea samples within different categories and grades were also successfully discriminated using this assay according to tea polyphenols, providing a new method for Chinese green tea identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.122380 | DOI Listing |