98%
921
2 minutes
20
Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC) 0.079 μg/ml) and 100% of a 100-virus clade C panel (geometric mean IC of 0.05 μg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897750 | PMC |
http://dx.doi.org/10.1080/19420862.2023.2165390 | DOI Listing |
J Immunother Cancer
September 2025
Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, Massachusetts, USA
Background: Tumor heterogeneity and antigen escape are mechanisms of resistance to chimeric antigen receptor (CAR)-T cell therapy, especially in solid tumors. Targeting multiple antigens with a unique CAR construct could be a strategy for a better tumor control than monospecific CAR-T cells on heterogeneous models. To overcome tumor heterogeneity, we targeted mesothelin (meso) and Mucin 16 (MUC16), two antigens commonly expressed in solid tumors, using a tandem CAR design.
View Article and Find Full Text PDFBMJ Open
September 2025
Genentech, South San Francisco, California, USA.
Objectives: Emicizumab is the first bispecific antibody approved for prophylaxis in people with haemophilia A with or without factor VIII inhibitors. Aggregate distributional cost-effectiveness analysis assesses health equity impacts by evaluating how health effects and costs from funding an intervention are distributed among population subgroups. The objective was to evaluate how funding emicizumab for people with severe haemophilia A (PwSHA) impacts population health and health disparities in the USA.
View Article and Find Full Text PDFTransplant Cell Ther
September 2025
Fred Hutchinson Cancer Center, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
Background: BCMA-directed chimeric antigen receptor (CAR)-T cell therapy represents a major therapeutic breakthrough for relapsed/refractory multiple myeloma (RRMM), offering deep and durable responses in heavily pretreated patients. However, a subset of patients experience early relapse or fail to respond, highlighting the need for strategies to enhance efficacy. Gamma-secretase inhibitors (GSIs) have been shown to increase surface BCMA expression on malignant plasma cells and may potentiate the activity of BCMA CAR-T cells, particularly in patients with low baseline BCMA antigen density.
View Article and Find Full Text PDFCancer Immunol Res
September 2025
Alligator Bioscience (Sweden), Lund, Sweden.
Despite recent progress within the field of immuno-oncology, immune suppression in the tumor microenvironment, defective antigen presentation, and low levels of tumor-specific T cells are key limitations of current cancer immunotherapies. CD40-targeting immunotherapies hold promises for addressing these limitations across solid tumors. Here, we describe ATOR-4066, a bispecific antibody that targets CD40 and CEACAM5 developed for immunotherapy of cancer using the Neo-X-Prime platform.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Division of Hematology and Oncology, UNM Comprehensive Cancer Center, Albuquerque, USA.
Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.
View Article and Find Full Text PDF