Fiber diameters and parallel patterns: proliferation and osteogenesis of stem cells.

Regen Biomater

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to the innate extracellular matrix mimicking features, fibrous materials exhibited great application potential in biomedicine. In developing excellent fibrous biomaterial, it is essential to reveal the corresponding inherent fiber features' effects on cell behaviors. Due to the inevitable 'interference' cell adhesions to the background or between adjacent fibers, it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat. A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein. In this unique material platform, the 'interference' cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background. The 'interference' cell adhesions between adjacent fibers could also be excluded from the sparsely arranged (SA) fiber patterns. The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired 'interference' cell adhesions in a controllable way. On the SA fiber patterns, small diameter fiber (SA-D1, D1 means 1 μm in diameter) may seriously restrict cell proliferation and osteogenesis when compared to the middle (SA-D8) and large (SA-D56) ones and SA-D8 shows the optimal osteogenesis enhancement effect. At the same time, the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged (DA) fiber patterns with small diameter fiber (DA-D1) when compared to the middle (DA-D8) and large (DA-D56) ones. The 'interference' cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters. Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively, thus providing valuable reference and guidance for developing effective fibrous biomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887345PMC
http://dx.doi.org/10.1093/rb/rbad001DOI Listing

Publication Analysis

Top Keywords

'interference' cell
20
cell behaviors
16
cell adhesions
16
fiber
14
adjacent fibers
12
fiber diameter
12
fiber patterns
12
cell
11
fiber diameters
8
proliferation osteogenesis
8

Similar Publications

Exploring the antiangiogenic effects of Phospholipases A from Bothrops diporus venom.

Cell Tissue Res

September 2025

Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.

View Article and Find Full Text PDF

Unrelated pathogens, including viruses and bacteria, use a common short linear motif (SLiM) to interact with cellular kinases of the RSK (p90 S6 ribosomal kinase) family. Such a "DDVF" (D/E-D/E-V-F) SLiM occurs in the leader (L) protein encoded by picornaviruses of the genus , including Theiler's murine encephalomyelitis virus (TMEV), Boone cardiovirus (BCV), and Encephalomyocarditis virus (EMCV). The L-RSK complex is targeted to the nuclear pore, where RSK triggers FG-nucleoporins hyperphosphorylation, thereby causing nucleocytoplasmic trafficking disruption.

View Article and Find Full Text PDF

Ribonucleases (RNases) represent a distinct category of nucleases that facilitate RNA degradation into smaller components. These enzymes are particularly adept at dismantling RNA strands and other materials. A promising strategy for the targeted treatment of cancer cells involves the administration of antibody-based toxic agents designed to eliminate tumor cells specifically.

View Article and Find Full Text PDF

Macrophages (MΦs) are integral cellular components responsible for immune response and tissue homeostasis. Evaluation of their pro-inflammatory (M1) and anti-inflammatory (M2) polarization states, along with their metabolic profiles, typically conducted via flow cytometry, is crucial for assessing the immune status of an organism. Traditional flow cytometry relies on extrinsic fluorescent labels, which may interfere with cellular function.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF