Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77 K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size ~ 2.0 µm) in Ti-0.3wt.%O is successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O is achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced dislocation activities that contribute to the excellent strain hardening ability. The present strategy will not only boost the potential applications of high strength Ti-O alloys at low temperatures, but can also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892041PMC
http://dx.doi.org/10.1038/s41467-023-36030-0DOI Listing

Publication Analysis

Top Keywords

grain refinement
8
ufg microstructure
8
grain boundary
8
grain
5
refinement titanium
4
titanium prevents
4
prevents low
4
low temperature
4
oxygen
4
temperature oxygen
4

Similar Publications

Background: The objective of this study was to compare the effects of daily consumption of white potatoes compared with white rice on cardiometabolic health in individuals with type-2 diabetes (T2D).

Objective: To determine the effects of white potato consumption compared to white rice (a commonly consumed refined grain) on indices of glycemic control and cardiovascular health in individuals with overweight or obesity and T2D.

Methods: In this randomized crossover study, comparative control trial, 24 adults with T2D [45-80 y, body mass index (kg/m) 25-40] consumed baked white potatoes (100 g) or calorie-matched white rice (75 g) daily for 12 wk, separated by a 2-wk washout, with assessments of glycemic control, lipids, inflammation, blood pressure, endothelial function, and body composition at baseline (only 1 baseline visit included as a covariate in statistical analyses), 6 wk, and 12 wk.

View Article and Find Full Text PDF

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Purpose: Recent developments in computational pathology have been driven by advances in vision foundation models (VFMs), particularly the Segment Anything Model (SAM). This model facilitates nuclei segmentation through two primary methods: prompt-based zero-shot segmentation and the use of cell-specific SAM models for direct segmentation. These approaches enable effective segmentation across a range of nuclei and cells.

View Article and Find Full Text PDF

Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.

View Article and Find Full Text PDF