98%
921
2 minutes
20
We study the effect of particle mobility on phase transitions in a spin fluid in two dimensions. The presence of a phase transition of the BKT universality class is shown in an off-lattice model of particles with purely repulsive interaction employing computer simulations. A critical spin wave region 0 < T < T is found with a nonuniversal exponent η(T) that follows the shape suggested by BKT theory, including a critical value consistent with η = 1/4. One can observe a transition from power-law decay to exponential decay in the static correlation functions at the transition temperature T, which is supported by finite-size scaling analysis. A critical temperature T = 0.17(1) is suggested. Investigations into the dynamic aspects of the phase transition are carried out. The short-time behavior of the incoherent spin autocorrelation function agrees with the Nelson-Fisher prediction, whereas the long-time behavior differs from the finite-size scaling known for the static XY model. Analysis of coherent spin wave dynamics shows that the spin wave peak is a propagating mode that can be reasonably well fitted by hydrodynamic theory. The mobility of the particles strongly enhances damping of the spin waves, but the model still lies within the dynamic universality class of the standard XY model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0129663 | DOI Listing |
Phys Rev Lett
August 2025
Indian Institute of Science, Centre for Condensed Matter Theory, Department of Physics, Bengaluru 560 012, India.
We present a detailed analytical and numerical examination, on square and triangular lattices, of the nonreciprocal planar spin model introduced in Dadhichi et al. [Phys. Rev.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Weizmann Institute of Science, Department of Condensed Matter Physics, Rehovot 7610001, Israel.
We address the problem of identifying a 2+1D topologically ordered phase using measurements on the ground-state wave function. For nonchiral topological order, we describe a series of bulk multipartite entanglement measures that extract the invariants ∑_{a} d_{a}^{2}θ_{a}^{r} for any r≥2, where d_{a} and θ_{a} are the quantum dimension and topological spin of an anyon a, respectively. These invariants are obtained as expectation values of permutation operators between 2r replicas of the wave function, applying different permutations on four distinct regions of the plane.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Pohang University of Science and Technology, Department of Physics, Pohang 37673, Korea.
d-wave altermagnets have magnetic octupoles as their order parameters [S. Bhowal and N. A.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.
Quasi-one-dimensional magnets can host an ordered longitudinal spin-density wave state (LSDW) in magnetic field at low temperature, when longitudinal correlations are strengthened by Ising anisotropies. In the S=1/2 Heisenberg antiferromagnet YbAlO_{3} this happens via Ising-like interchain interactions. Here, we report the first experimental observation of magnetization plateaux at 1/5 and 1/3 of the saturation value via thermal transport and magnetostriction measurements in YbAlO_{3}.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.
View Article and Find Full Text PDF