Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The aim: To study the possibilities of alpha-lipoic acid (ALA) to control the parameters of carbohydrate metabolism.

Patients And Methods: Materials and methods: We examined 80 people with type 2 DM and coronary heart disease who suffered non-Q-myocardial infarction (non-Q-MI). All patients at the time of inclusion in the study received oral hypoglycemic agents, ACE inhibitor, β-blocker, statin and antiplatelet agent. 600 mg of ALA per day for 4 months was added to this treatment. After checking the patients for compliance with the criteria, they were divided into the main and experimental groups. The dosage of alpha-lipoic acid was determined for each of the groups. The results of the treatment were analyzed by determining the mean and standard deviations.

Results: Results: At the end of the observation period, a significant decrease in the level of fasting glucose (FG) by 11.6% was found, which corresponded to the average size of the clinical effect. The values of glycosylated hemoglobin (HbA1c) and the insulin resistance index HOMA (HOMA-IR) showed only a tendency to decrease on the background of treatment. The effect of ALA on postprandial glycemia (PPG) and insulin levels was not detected in this study.

Conclusion: Conclusions: An additional 4-month dose of ALA in addition to baseline therapy showed a moderate effect on the decrease in FG concentration in the absence of significant dynamics in other parameters of glycemic control in the examined patients.

Download full-text PDF

Source
http://dx.doi.org/10.36740/WLek202212131DOI Listing

Publication Analysis

Top Keywords

alpha-lipoic acid
12
effects alpha-lipoic
4
acid glycemic
4
glycemic status
4
status type
4
type diabetes
4
patients
4
diabetes patients
4
patients Сhronic
4
Сhronic coronary
4

Similar Publications

Diabetes is a metabolic and chronic disease affecting different tissues' metabolism. Genetic factors, lifestyles, and dietary habits can cause it. In diabetes, oxidative stress can occur in metabolic disorders, negatively affecting it.

View Article and Find Full Text PDF

Alleviating effects of polyphenol extract from rapeseed meal on type 2 diabetes in mice via modulation of gut microbiota and AMPK/mTOR signaling pathways.

Food Res Int

November 2025

Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition

Type 2 diabetes mellitus (T2DM) is a a complex metabolic disorder that poses a serious threat to human health. Although polyphenol extract from rapeseed meal (RMP) has demonstrated inhibitory activity against α-glucosidase, the alleviating effects on T2DM and the underlying molecular mechanisms remain largely unexplored in T2DM. In this study, the antidiabetic effects of RMP were investigated using a T2DM mouse model induced by a high-fat diet (HFD) combined with streptozotocin (STZ) administration.

View Article and Find Full Text PDF

The Pathophysiological Role of Mitochondrial Oxidative Stress in Rheumatic Diseases.

J Inflamm Res

September 2025

Department of Pharmacy, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, People's Republic of China.

Mitochondria play a crucial role in reactive oxygen species (ROS)-dependent rheumatic diseases, including ankylosing spondylitis, osteoarthritis (OA), systemic lupus erythematosus (SLE) and scleroderma. Mitochondrial DNA (mtDNA), which encodes mitochondrial proteins, is more vulnerable to oxidants compared to nuclear DNA. When mtDNA gets damaged, it leads to mitochondrial dysfunction, such as electron transport chain impairment and loss of mitochondrial membrane potential.

View Article and Find Full Text PDF

α-Lipoic acid (LA) has recently emerged as an attractive, inexpensive monomer for synthesizing degradable polymers via ring-opening of its 1,2-dithiolane, introducing easily cleavable disulfide linkages into polymer backbones. Reversible addition-fragmentation chain transfer (RAFT) copolymerization with vinyl monomers enables access to degradable poly(disulfide)s with controlled molecular weights. However, conventional thermal RAFT methods suffer from oxygen sensitivity, limited LA incorporation (<40 mol%), and modest degrees of polymerization (DP < 300).

View Article and Find Full Text PDF

Background: Oxidative stress (OS) accelerates the pathogenesis of coronary artery disease (CAD) by contributing to atherosclerotic plaque formation. Current research indicates that antioxidants can mitigate OS by reducing the production of free radicals. Despite many studies that have tested the effects of antioxidants on oxidative stress in patients with CAD, the literature still lacks an updated and comprehensive systematic review.

View Article and Find Full Text PDF