Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, we report a reductive hydrazo-sulfonylative difunctionalization cascade of alkynyl cyclohexadienones employing PhTeTePh as an uncommon reducing agent. Diphenyl ditelluride is a commercially available solid with a good solubility profile in most organic solvents, and this is the first report illustrating it as a reducing agent. The protocol afforded a variety of difunctionalized dihydrochromenones and dihydrobenzofuranones in good yields under relatively mild conditions. The reactions were scalable, and mechanistic studies were conducted to probe the reaction mechanism. Additionally, photophysical studies of the products were carried out, which revealed that they had significant absorption (400-450 nm) and emission (520-570 nm) in the visible region.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c04367DOI Listing

Publication Analysis

Top Keywords

reducing agent
12
diphenyl ditelluride
8
cascade alkynyl
8
alkynyl cyclohexadienones
8
ditelluride unconventional
4
unconventional reducing
4
agent sulfonylative
4
sulfonylative cascade
4
cyclohexadienones report
4
report reductive
4

Similar Publications

Pterostilbene as a promising natural anticancer agent in gynecological cancers.

Med Oncol

September 2025

Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Gynecological cancer, encompassing cancers such as endometrial and cervical cancer, is a growing concern worldwide, with a rising incidence and significant impact on women's health. Pterostilbene (PT), a natural compound, has shown promising therapeutic potential in gynecological cancer treatment. This review aims to summarize the current state of knowledge on PT's effects in gynecological cancer, focusing on its molecular mechanisms, preclinical studies, and clinical trials.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF

While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.

View Article and Find Full Text PDF

Liraglutide is a key therapeutic agent in managing type 2 diabetes mellitus (T2DM), with benefits extending beyond glycemic control to address cardiovascular and renal comorbidities. As T2DM prevalence rises globally, the need for medications that provide comprehensive health benefits becomes increasingly important. Liraglutide, a GLP-1 receptor agonist, has demonstrated effectiveness in reducing cardiovascular events, especially among patients with high cardiovascular risk, such as those with a prior history of myocardial infarction or stroke.

View Article and Find Full Text PDF

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF