Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Dysregulated connexin signaling is implicated in the pathophysiology of pulmonary artery hypertension (PAH). Nicotine affects pulmonary vascular remodeling. However, the potential mechanistic link between connexin signaling and nicotine-induced pulmonary artery remodeling remains unclear. We aimed to investigate the role of connexin 43 (Cx43) in pulmonary artery remodeling in nicotine-administered C57BL/6 J wild-type (WT) and Cx43 heterozygous (Cx43) mice. Hemodynamic parameters and right ventricle pathology were assessed in the mice. Serum biochemical indices of hepatic and renal function were measured. The RT-PCR, immunofluorescence, and western blotting were conducted to evaluate Cx43 mRNA and protein levels. We performed histological staining to identify pulmonary arteries. Wire myography was used to examine contraction and relaxation responses in the pulmonary arteries. Pulmonary vascular permeability was assessed through Evans blue staining. Compared with the WT group, the Cx43 group showed lower Cx43 mRNA and protein expression in the pulmonary arteries (P < 0.01). Nicotine treatment significantly increased Cx43 expression (P < 0.01) and induced morphological changes in the pulmonary arteries (P < 0.01). Our findings suggest that Cx43 plays a crucial role in pulmonary artery reactivity and permeability in mice. Furthermore, downregulation of Cx43 expression may contribute to alterations in pulmonary artery structure and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2023.01.008 | DOI Listing |