Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Only 50% of patients with depression respond to the first antidepressant drug administered. Thus, biomarkers for prediction of antidepressant responses are needed, as predicting which patients will not respond to antidepressants can optimize selection of alternative therapies. We aimed to identify biomarkers that could predict antidepressant responsiveness using a novel data-driven approach based on statistical pattern recognition. We retrospectively divided patients with major depressive disorder into antidepressant responder and non-responder groups. Comprehensive gene expression analysis was performed using peripheral blood without narrowing the genes. We designed a classifier according to our own discrete Bayes decision rule that can handle categorical data. Nineteen genes showed differential expression in the antidepressant non-responder group (n = 15) compared to the antidepressant responder group (n = 15). In the training sample of 30 individuals, eight candidate genes had significantly altered expression according to quantitative real-time polymerase chain reaction. The expression of these genes was examined in an independent test sample of antidepressant responders (n = 22) and non-responders (n = 12). Using the discrete Bayes classifier with the and genes identified in the training set yielded 85% discrimination accuracy for antidepressant responsiveness in the 34 test samples. Pathway analysis of the RNA sequencing data for antidepressant responsiveness identified that hypercytokinemia- and interferon-related genes were increased in non-responders. Disease and biofunction analysis identified changes in genes related to inflammatory and infectious diseases, including coronavirus disease. These results strongly suggest an association between antidepressant responsiveness and inflammation, which may be useful for future treatment strategies for depression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876967 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e13059 | DOI Listing |