98%
921
2 minutes
20
Securing the electrochemical durability of noble metal platinum is of central importance for the successful implementation of a proton exchange membrane fuel cell (PEMFC). Pt dissolution, a major cause of PEMFC degradation, is known to be a potential-dependent transient process, but its underlying mechanism is puzzling. Herein, we elucidate a chemical Pt dissolution process that can occur in various electrocatalytic conditions. This process intensively occurs during potential perturbations with a millisecond timescale, which has yet to be seriously considered. The open circuit potential profiles identify the dominant formation of metastable Pt species at such short timescales and their simultaneous dissolution. Considering on these findings, a proof-of-concept strategy for alleviating chemical Pt dissolution is further studied by tuning electric double layer charging. These results suggest that stable Pt electrocatalysis can be achieved if rational synthetic or systematic strategies are further developed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875222 | PMC |
http://dx.doi.org/10.1021/jacsau.2c00474 | DOI Listing |
Nano Lett
September 2025
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China.
Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab.
Objectives: Lycopene is a powerful antioxidant with diverse health benefits. However, it belongs to the Biopharmaceutics Classification System II; thus, it depicts poor water solubility and dissolution. Its lipophilic nature hinders the bioavailability of this drug.
View Article and Find Full Text PDFBioresour Technol
September 2025
Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province, Guiyang 550025, China. Electronic address:
Worldwide, marine shell waste generated from the seafood industry has emerged as a significant environmental challenge. Indeed, this shell waste represents an abundant source of various valuable products, particularly chitin. However, the extraction and subsequent processing of chitin are hindered by the inherently resistant structure of these chitin-rich feedstocks, coupled with strong hydrogen bonding between chitin chains.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483, Iași, Romania; Faculty of Chemistry, Al. I. Cuza University, 11- Carol I Bvd., 700506, Iasi, Romania. Electronic address:
This contribution discusses the design of bionanocomposites based on chitosan and MgAl layered double hydroxides (LDH) for cancer therapy. Compared to other studies, our approach was to pre-adsorb the metal chloride precursors of LDH on chitosan while the solution of metal precursors with and without H provided the acidic environment for polymer dissolution. The structure, morphology and chemical composition of the bionanocomposites were characterized by XRD, FTIR, TG, etc.
View Article and Find Full Text PDF