Cell polarity opposes Jak/STAT-mediated Escargot activation that drives intratumor heterogeneity in a Drosophila tumor model.

Cell Rep

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA. Electronic address:

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In proliferating neoplasms, microenvironment-derived selective pressures promote tumor heterogeneity by imparting diverse capacities for growth, differentiation, and invasion. However, what makes a tumor cell respond to signaling cues differently from a normal cell is not well understood. In the Drosophila ovarian follicle cells, apicobasal-polarity loss induces heterogeneous epithelial multilayering. When exacerbated by oncogenic-Notch expression, this multilayer displays an increased consistency in the occurrence of morphologically distinguishable cells adjacent to the polar follicle cells. Polar cells release the Jak/STAT ligand Unpaired (Upd), in response to which neighboring polarity-deficient cells exhibit a precursor-like transcriptomic state. Among the several regulons active in these cells, we could detect and further validate the expression of Snail family transcription factor Escargot (Esg). We also ascertain a similar relationship between Upd and Esg in normally developing ovaries, where establishment of polarity determines early follicular differentiation. Overall, our results indicate that epithelial-cell polarity acts as a gatekeeper against microenvironmental selective pressures that drive heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374876PMC
http://dx.doi.org/10.1016/j.celrep.2023.112061DOI Listing

Publication Analysis

Top Keywords

selective pressures
8
follicle cells
8
cells
6
cell polarity
4
polarity opposes
4
opposes jak/stat-mediated
4
jak/stat-mediated escargot
4
escargot activation
4
activation drives
4
drives intratumor
4

Similar Publications

Study Question: Does weight loss from a hypocaloric dietary intervention improve antral follicle dynamics in women with PCOS?

Summary Answer: During a 3-month hypocaloric dietary intervention, women with PCOS who experienced clinically meaningful weight loss showed more organized antral follicle development including fewer recruitment events, but no change in the overall frequency of selection, dominance, or ovulation.

What Is Known Already: There is a spectrum of disordered antral follicle development in women with PCOS including excessive follicle recruitment and turnover, decreased frequency of selection and dominance, and failure of ovulation. Lifestyle intervention aimed at weight loss is recommended to improve metabolic health in women with PCOS yet benefits on ovarian follicle development and ovulation are unclear.

View Article and Find Full Text PDF

In this article, "Cosmosis" introduces a newly coined metaphorical term that illustrates conceptual parallels between the physiological process of osmosis and the expansive dynamics of the cosmos. Designed as an interdisciplinary teaching framework, Cosmosis provides a novel way to link cellular homeostasis with cosmological principles such as entropy, spacetime curvature, and dark energy. By drawing on core physiological terms such as concentration gradients, osmotic pressure, aquaporins, and membrane selectivity, Cosmosis offers an analogy that may spark curiosity, support integrative thinking, and encourage cross-disciplinary dialogue in physiology and biochemistry education.

View Article and Find Full Text PDF

Background: Luminal instruments are characterized by their slender internal lumens, which make them particularly challenging to clean and dry. A common drying method used by Sterile Processing Department (SPD) technicians involves blowing high-pressure air into one end of the lumen to expel moisture. However, this process generates a significant amount of aerosols that may contain bacteria, viruses, and other microorganisms.

View Article and Find Full Text PDF

Bioinspired Vacuum Generation via Pressure-to-Vacuum Conversion for Manipulating all Phases of Matter.

Soft Robot

September 2025

Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy.

Animal diaphragm-lung systems are soft organs that generate a controllable vacuum. Elephants, as rare land animals, can manipulate all three states of matter using their lung-generated vacuum. In soft robotics, however, current vacuum generation relies on rigid components, and no single soft device effectively handles all states of matter.

View Article and Find Full Text PDF

Evolution of cross-tolerance to metals in yeast.

Proc Natl Acad Sci U S A

September 2025

Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Organisms often face multiple selective pressures simultaneously (e.g., mine tailings with multiple heavy metal contaminants), yet we know little about when adaptation to one stressor provides cross-tolerance or cross-intolerance to other stressors.

View Article and Find Full Text PDF