Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Candida albicans remains the most common species causing invasive candidiasis. In this study, we present the population structure of 551 global C. albicans strains. Of these, the antifungal susceptibilities of 370 strains were tested. Specifically, 66.6% of the azole-nonsusceptible (NS)/non-wild-type (NWT) strains that were tested belonged to Clade 1. A phylogenetic analysis, a principal components analysis, the population structure, and a loss of heterozygosity events revealed two nested subclades in Clade 1, namely, Clade 1-R and Clade 1-R-α, that exhibited higher azole-NS/NWT rates (75.0% and 100%, respectively). In contrast, 6.4% (21/326) of the non-Clade 1-R isolates were NS/NWT to at least 1 of 4 azoles. Notably, all of the Clade 1-R-α isolates were pan-azole-NS/NWT that carried unique A114S and Y257H double substitutions in Erg11p and had the overexpression of ABC-type efflux pumps introduced by the substitution A736V in transcript factor Tac1p. It is worth noting that the Clade 1-R and Clade 1-R-α isolates were from different cities that are distributed over a large geographic span. Our study demonstrated the presence of specific phylogenetic subclades that are associated with antifungal resistance among C. albicans Clade 1, which calls for public attention on the monitoring of the future spread of these clones. Invasive candidiasis is the most common human fungal disease among hospitalized patients, and Candida albicans is the predominant pathogen. Considering the large number of infected cases and the limited alternative therapies, the azole-resistance of C. albicans brings a huge clinical threat. Here, our study suggested that antifungal resistance in C. albicans could also be associated with phylogenetic lineages. Specifically, it was revealed that more than half of the azole-resistant C. albicans strains belonged to the same clade. Furthermore, two nested subclades of the clade exhibited extremely high azole-resistance. It is worth noting that the isolates of two subclades were from different cities that are distributed over a large geographic span in China. This indicates that the azole-resistant C. albicans subclades may develop into serious public health concerns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927326PMC
http://dx.doi.org/10.1128/spectrum.03807-22DOI Listing

Publication Analysis

Top Keywords

candida albicans
12
clade 1-r-α
12
clade
10
albicans
9
invasive candidiasis
8
population structure
8
albicans strains
8
strains tested
8
belonged clade
8
nested subclades
8

Similar Publications

Role of in chronic inflammation and the development of oral squamous cell carcinoma.

Cancer Pathog Ther

September 2025

Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.

Oral cancer pathogenesis is significantly influenced by species, especially , through chronic inflammation and cellular dysregulation. Epidemiological studies highlight a strong correlation between persistent infections and oral carcinogenesis. Experimental evidence has identified key biomolecular mechanisms, including biofilm formation, epithelial invasion, and immune evasion.

View Article and Find Full Text PDF

Anticancer, Antioxidant and Antimicrobial Activity of . Leaf Extract.

Drug Des Devel Ther

September 2025

Mardin Artuklu University, Kızıltepe Faculty of Agricultural Sciences and Technologies, Department of Field Crops, Mardin, Artuklu, 47200, Türkiye.

Objective: This study was conducted to determine and compare the antioxidant, cytotoxic, and antimicrobial effects of spindle leaves of L. () (oleaster) leaves.

Methods: Total phenolic content was measured using the Folin-Ciocalteu method, phenolic compound analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and antimicrobial effect by the minimum inhibition concentration (MIC) method.

View Article and Find Full Text PDF

Background: The emergence of drug-resistant pathogens has stimulated the need for the development of new antimicrobial agents. Epigenetic modulation by suppressing epigenetic inhibitors, such as 5-azacytidine (5-aza), has been shown to activate silent biosynthetic gene clusters within a fungus and causes the production of novel secondary metabolites. This research examined this epigenetic modification strategy in the poorly studied filamentous fungus, Ceratorhiza hydrophila, which may help induce the additional production of bioactive compounds.

View Article and Find Full Text PDF

In the opportunistic pathogen , hyphal growth and virulence factor expression are regulated by environmental and chemical cues. Farnesol is a secreted autoregulatory molecule that represses filamentation. It is derived from farnesyl pyrophosphate (FPP), an ergosterol biosynthesis pathway intermediate.

View Article and Find Full Text PDF

The growing threat of antibiotic-resistant bacteria continues to be one of the biggest challenges facing public health. As a result, there is an increasing focus on developing new substances with both antimicrobial and biofilm inhibition activities. One such group of compounds is surfactants, particularly quaternary ammonium salts (QASs), which are commonly used as disinfectants in healthcare.

View Article and Find Full Text PDF