98%
921
2 minutes
20
Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the persistence of the pandemic, even with mass coronavirus disease 2019 (COVID-19) vaccination, have raised questions about the durability of immunity and extent of cross-reactive immunity after vaccination. This study aimed to characterize the humoral and cellular immune response to the mRNA-1273 vaccine using a prospective longitudinal cohort.
Methods: We recruited 177 young SARS-CoV-2 infection-naive adults. Two doses of mRNA-1273 vaccine were administered at 28-day intervals, and blood samples were collected at five time points: pre-vaccination (T0), 4 weeks after the first (T1) and second dose (T2), and 3 months (T3) and 6 months (T4) after the first dose. Anti-SARS-CoV-2 spike protein (anti-S) IgG antibody, neutralizing antibody, and T-cell immune responses were evaluated.
Results: The two-dose mRNA-1273 vaccination induced robust anti-SARS-CoV-2 antibody responses, which remained higher than the titers at T1 until T4. A higher peak anti-S antibody titer at T2 was associated with better cross-reactive immunity against Delta and Omicron variants and long-lasting (anti-S IgG and neutralizing antibody) humoral immunity up to T4. The overall T-cell immune response was not correlated with peak antibody titers (T-lymphocyte subpopulation analysis was not performed).
Conclusion: This study showed that an early strong antibody response is predictive of longer humoral immunity and better cross-reactive neutralizing immunity against Delta and Omicron variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868900 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.1035441 | DOI Listing |
PLoS One
September 2025
Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
The fourth leading cause of death in the US, Chronic Obstructive Pulmonary Disease (COPD) is punctuated by frequent viral and bacterial infections causing severe acute exacerbations (AECOPD) and increased mortality. In previous work we have shown that altered immune cell signaling may confer increased and persistent susceptibility to infection. Here we continue this investigation by conducting broad-spectrum proteomic profiling of circulating white blood cells to assemble an empirical protein-protein interaction network associated with frequency of infectious exacerbation.
View Article and Find Full Text PDFUnlabelled: The evolution of SARS-CoV-2 has resulted in antigenically distinct variants that challenge vaccine-induced immunity. The KP.2 monovalent mRNA vaccine was deployed in 2024 to address immune escape by emerging SARS-CoV-2 subvariants.
View Article and Find Full Text PDFUnderstanding how antigenic distance influences cross-reactive responses can inform vaccine design. Multivalent displays of viral proteins can improve B cell activation due to receptor cross-linking, and mosaic nanoparticles that incorporate variants can lead to cross-reactive B cell responses recognizing conserved epitopes. Here, we used the influenza virus neuraminidase to develop a neuraminidase-on-a-string platform displaying neuraminidase dimer pairs conjugated to a nanocarrier To systematically assess the influence of antigenic distance on humoral immunity, we paired H2N2 neuraminidase with either divergent H3N2 or H11N9 neuraminidases.
View Article and Find Full Text PDFNeural Regen Res
September 2025
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Autologous nerve transplantation is currently recognized as the gold standard for treating severe peripheral nerve injuries in clinical practice. However, challenges such as a limited supply of donors, complications in the donor area, and the formation of neuromas necessitate the optimization of existing transplantation strategies. Additionally, the development of new and promising repair methods is a critical issue in the field of peripheral nerve research.
View Article and Find Full Text PDFSci Transl Med
September 2025
Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
The rapid emergence of divergent SARS-CoV-2 variants led to a 2023-2024 update of the COVID-19 mRNA vaccine to a monovalent version containing the XBB.1.5 SARS-CoV-2 spike antigen.
View Article and Find Full Text PDF