Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
White matter (WM) injury is frequently observed along with dementia. Positron emission tomography with amyloid-ligands (Aβ-PET) recently gained interest for detecting WM injury. Yet, little is understood about the origin of the altered Aβ-PET signal in WM regions. Here, we investigated the relative contributions of diffusion MRI-based microstructural alterations, including free water and tissue-specific properties, to Aβ-PET in WM and to cognition. We included a unique cohort of 115 participants covering the spectrum of low-to-severe white matter hyperintensity (WMH) burden and cognitively normal to dementia. We applied a bi-tensor diffusion-MRI model that differentiates between (i) the extracellular WM compartment (represented via free water), and (ii) the fiber-specific compartment (via free water-adjusted fractional anisotropy [FA]). We observed that, in regions of WMH, a decrease in Aβ-PET related most closely to higher free water and higher WMH volume. In contrast, in normal-appearing WM, an increase in Aβ-PET related more closely to higher cortical Aβ (together with lower free water-adjusted FA). In relation to cognitive impairment, we observed a closer relationship with higher free water than with either free water-adjusted FA or WM PET. Our findings support free water and Aβ-PET as markers of WM abnormalities in patients with mixed dementia, and contribute to a better understanding of processes giving rise to the WM PET signal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196746 | PMC |
http://dx.doi.org/10.1177/0271678X231152001 | DOI Listing |