A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873918PMC
http://dx.doi.org/10.1038/s42003-023-04469-yDOI Listing

Publication Analysis

Top Keywords

acute chronic
12
expression splicing
12
splicing signatures
12
murine colitis
8
colitis models
8
temporal gene
8
gene expression
8
machine learning
8
signatures
6
temporal
5

Similar Publications