Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SARS-CoV-2 is a zoonotic virus first identified in 2019, and has quickly spread worldwide. The virus is primarily transmitted through respiratory droplets from infected persons; however, the virus-laden excretions can contaminate surfaces which can serve as a potential source of infection. Since the beginning of the pandemic, SARS-CoV-2 has continued to evolve and accumulate mutations throughout its genome leading to the emergence of variants of concern (VOCs) which exhibit increased fitness, transmissibility, and/or virulence. However, the stability of SARS-CoV-2 VOCs in biological fluids has not been thoroughly investigated. The aim of this study was to determine and compare the stability of different SARS-CoV-2 strains in human biological fluids. Here, we demonstrate that the ancestral strain of the Wuhan-like lineage A was more stable than the Alpha VOC B.1.1.7, and the Beta VOC B.1.351 strains in human liquid nasal mucus and sputum. In contrast, there was no difference in stability among the three strains in dried biological fluids. Furthermore, we also show that the Omicron VOC B.1.1.529 strain was less stable than the ancestral Wuhan-like strain in liquid nasal mucus. These studies provide insight into the effect of the molecular evolution of SARS-CoV-2 on environmental virus stability, which is important information for the development of countermeasures against SARS-CoV-2. Genetic evolution of SARS-CoV-2 leads to the continuous emergence of novel virus variants, posing a significant concern to global public health. Five of these variants have been classified to date into variants of concern (VOCs); Alpha, Beta, Gamma, Delta, and Omicron. Previous studies investigated the stability of SARS-CoV-2 under various conditions, but there is a gap of knowledge on the survival of SARS-CoV-2 VOCs in human biological fluids which are clinically relevant. Here, we present evidence that Alpha, Beta, and Omicron VOCs were less stable than the ancestral Wuhan-like strain in human biological fluids. Our findings highlight the potential risk of contaminated human biological fluids in SARS-CoV-2 transmission and contribute to the development of countermeasures against SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927102PMC
http://dx.doi.org/10.1128/spectrum.03301-22DOI Listing

Publication Analysis

Top Keywords

biological fluids
28
human biological
20
sars-cov-2
12
alpha beta
12
variants concern
12
stability sars-cov-2
12
beta omicron
8
concern vocs
8
sars-cov-2 vocs
8
strains human
8

Similar Publications

BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disorder. While AD diagnosis traditionally relies on clinical criteria, recent trends favor a precise biological definition. Existing biomarkers efficiently detect AD pathology but inadequately reflect the extent of cognitive impairment or disease heterogeneity.

View Article and Find Full Text PDF

Recently, metal-organic frameworks (MOFs) have shown high potential in the field of sensing. However, fluorescent-based detection with MOFs in solution needs complex pre-treatments and has stability issues, complicating measurements and handling for sensing applications. Here, an easy-to-handle and low-cost strategy is introduced to convert MOF-based sensing from solution to surface using scanning probe lithography.

View Article and Find Full Text PDF

Objective: The aim of this RCT was to analyse the relationship between intermittent vibratory forces and external apical root resorption (EARR) in patients treated with clear aligners, building on prior research on vibrational effects on biomarkers.

Materials And Methods: A parallel, three-arm randomised clinical trial included adults to be treated with clear aligners, randomly assigned by a computerised randomisation list to: Group A (vibration from treatment onset), Group B (vibration after 6 weeks), or Group C (no vibration). While patients and orthodontists were aware of group assignments, evaluators remained blinded.

View Article and Find Full Text PDF

The vascular endothelium is responsible for regulating vascular tone, maintaining fluid homeo-stasis, and preventing platelet aggregation, exhibits regulatory properties in vasorelaxation and vasoconstriction - it produces, among others, nitric oxide and endothelin. The imbalance of vasoactive molecules leads to the loss of their function, known as endothelial dysfunction. Impaired endothelial function is observed in people with metabolic disorders, often preceding the onset of the disease by several years.

View Article and Find Full Text PDF

Lemon balm (), a perennial herb belonging to the Lamiaceae family, is widely recognized for its medicinal properties and therapeutic benefits. This review offers a detailed exploration of the botanical features, phytochemical composition, and pharmacological uses of , highlighting key bioactive compounds such as phenolic acids (including rosmarinic and caffeic acids), flavonoids, essential oils (such as citral and citronellal), and triterpenoids (ursolic and oleanolic acids). Advanced extraction techniques, such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), and matrix solid-phase dispersion (MSPD), have greatly improved the efficiency of extraction, the preservation of bioactivity, and the sustainability of acquiring these bioactive compounds.

View Article and Find Full Text PDF