98%
921
2 minutes
20
With the growing development of film capacitors in various applications, the requirements for polymer dielectrics have increased accordingly. In this work, a series of ester-cotaining polyimide (EPI) dielectrics were designed and fabricated. Futhermore, integrated exploration of experimentation and molecular simulation is proposed to achieve polymer dielectrics with advanced comprehensive performance, as well as to analyze the dielectric mechanism in-depth. The EPIs show superior thermal resistance and dielectric properties. A Weibull breakdown strength of 440-540 MV m, permittivity of 3.52-3.85, dissipation factor of 0.627-0.880% and theoretical energy density of 3.13-4.90 J cm were obtained for the EPIs. The relationship between microscopic parameters and dielectric behavior was investigated in detail. According to the experimental and calculated results, there is close correlation between dipolar moment density (/ ) and dielectric permittivity ( ). It is deduced that the integrated research of experiments and molecular simulation would be an effective strategy to reveal the dielectric mechanism as well as assist in the molecular design of polymer dielectrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811354 | PMC |
http://dx.doi.org/10.1039/d2ra06376j | DOI Listing |
Bioorg Chem
September 2025
Post Graduate and Research Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi 613 503, Thanjavur, India. Electronic address:
The research employed zirconyl oxychloride as a catalyst in a reaction involving pyrazole aldehyde, (thio)urea, and acetyl acetone to establish an aqueous approach for synthesizing 3,4-dihydropyrimidinone derivatives (compounds 4a-j) with potential claims as antidiabetic agents. FT-IR, HR-MS, H NMR and C NMR were employed to analyze the synthesized compounds. The HOMO-LUMO analysis was performed to evaluate the stability of the synthesized derivatives.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Biology, Faculty of Science, Selçuk University, Konya, Turkey.
Hippophae salicifolia, commonly known as sea buckthorn, is native to the Indian Himalayan region. This study is the first to comprehensively assess the phytochemical profile and biological activities of H. salicifolia leaves extracted through maceration, infusion, and percolation (Soxhlet apparatus) methods.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea.
One of the most significant problems facing the scientific community in the 21st century is diabetes mellitus. There is an urgent need to create new powerful compounds that can fight this terrible disease because the number of instances of diabetes and drug-resistant diabetes is rising. We have synthesized a novel series of thiazole-derived thiadiazole-based Schiff base derivatives (1-10) in an effort to identify potential antidiabetic agents.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh.
Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.
Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.
PLoS One
September 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.
Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.