Dependence of apparent diffusion coefficient on slice position in magnetic resonance diffusion imaging.

Magn Reson Imaging

Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan. Electronic address:

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The position dependence of the apparent diffusion coefficient (ADC) in magnetic resonance imaging (MRI) by echo-planar imaging (EPI)- and turbo spin echo (TSE)-diffusion-weighted imaging (DWI) was assessed using phantoms.

Methods: Six pure water-filled containers were placed parallel to the direction of the static magnetic field from the center of the magnetic field to the foot direction (five containers) and the head direction (one container). Six slice positions were set, and a cross-section image was scanned at the center of each container using a 1.5-T MRI scanner. Diffusion times for both EPI- and TSE-DWI were matched as much as possible. The slice thickness was adjusted to match the signal-to-noise ratio (SNR) at the center of the magnetic field for both sequences. A B map was analyzed. The ADC and SNR at each position of both sequences were tested using the Wilcoxon signed-rank test (P = 0.05) and compared using Friedman and Steel-Dwass multiple comparison tests (P = 0.05). Pearson correlation coefficients between ADC and SNR and between ADC and flip angle (FA) were calculated.

Results: ADC decreased significantly with distance from the center of the magnetic field for both EPI-DWI and TSE-DWI (P < 0.05). TSE-ADC was significantly higher than EPI-ADC for all combinations (P < 0.01). Based on the Friedman test, the SNR of EPI- and TSE-DWI was significantly different and depended on the slice position (P < 0.01). The Pearson correlation coefficient between ADC and SNR was 0.78 in EPI-DWI and 0.60 in TSE-DWI, whereas that between ADC and FA was 0.97 in EPI-DWI and 0.94 in TSE-DWI. The FA decreased by 0.048 and 0.047° per mm from the center of the magnetic field to head and foot directions, respectively.

Conclusion: ADC depends on the slice position and decreases with an increase in distance from the magnetic field center. Caution should be taken when comparing and quantitatively evaluating the ADC at sites shifted in the long-axis direction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2023.01.009DOI Listing

Publication Analysis

Top Keywords

magnetic field
16
center magnetic
12
dependence apparent
8
apparent diffusion
8
diffusion coefficient
8
magnetic resonance
8
adc snr
8
magnetic
6
adc
5
diffusion
4

Similar Publications

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF

Streptococcus mutans, a key cause of dental caries, is not treated by conventional toothpaste, brushing, flossing, or antiseptic mouthwashes. This necessitates the development of enriched toothpaste. Cyanobacteria-derived phycoerythrin (PE) has antioxidant and antibacterial properties.

View Article and Find Full Text PDF

The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.

View Article and Find Full Text PDF

A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.

View Article and Find Full Text PDF

Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.

View Article and Find Full Text PDF