Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrogels have been suggested as novel drug delivery systems for sustained release of therapeutic proteins in various neurological disorders. The main advantage these systems offer is the controlled, prolonged exposure to a therapeutically effective dose of the released drug after a single intracerebral injection. Characterization of controlled release of therapeutics from a hydrogel is generally performed , as current methods do not allow for measurements of spatiotemporal distribution and release kinetics of a loaded protein. Importantly, the environment introduces many additional variables and factors that cannot be effectively simulated under conditions. To address this, in the present contribution, we developed a noninvasive magnetic resonance imaging (MRI) method to monitor local protein release from two injected hydrogels of the same chemical composition but different initial water contents. We designed a biodegradable hydrogel formulation composed of low and high concentration thermosensitive polymer and thiolated hyaluronic acid, which is liquid at room temperature and forms a gel due to a combination of physical and chemical cross-linking upon injection at 37 °C. The protein release kinetics from these gels were assessed by MRI analysis utilizing a model protein labeled with an MR contrast agent, i.e. gadolinium-labeled albumin (74 kDa). As proof of principle, the release kinetics of the hydrogels were first measured with MRI . Subsequently, the protein loaded hydrogels were administered in male Wistar rat brains and the release was monitored for 21 days. , the thermosensitive hydrogels with an initial water content of 81 and 66% released 64 ± 3% and 43 ± 3% of the protein loading, respectively, during the first 6 days at 37 °C. These differences were even more profound , where the thermosensitive hydrogels released 83 ± 16% and 57 ± 15% of the protein load, respectively, 1 week postinjection. Measurement of volume changes of the gels over time showed that the thermosensitive gel with the higher polymer concentration increased more than 4-fold in size after 3 weeks, which was substantially different from the behavior where a volume change of 35% was observed. Our study demonstrates the potential of MRI to noninvasively monitor intracerebral protein release from a locally administered in situ forming hydrogel, which could aid in the development and optimization of such drug delivery systems for brain disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930091PMC
http://dx.doi.org/10.1021/acsbiomaterials.2c01224DOI Listing

Publication Analysis

Top Keywords

protein release
16
release kinetics
12
protein
9
release
9
drug delivery
8
delivery systems
8
initial water
8
thermosensitive hydrogels
8
hydrogels
7
thermosensitive
5

Similar Publications

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Elesclomol-Copper combination synergistically targets mitochondrial metabolism in cancer stem cells to overcome chemoresistance in pancreatic ductal adenocarcinoma.

Mol Ther

September 2025

Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, partly due to cancer stem cells (CSCs) that drive progression and treatment resistance. We explored the therapeutic potential of inducing cuproptosis, a copper-dependent regulated cell death, in CSC-enriched PDAC models. Using human and murine PDAC models, we evaluated elesclomol, a copper transport enhancer.

View Article and Find Full Text PDF

Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process.

View Article and Find Full Text PDF

Astrocytic monoamine oxidase B (MAOB)-gamma-aminobutyric acid (GABA) axis as a molecular brake on repair following spinal cord injury.

Signal Transduct Target Ther

September 2025

Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.

View Article and Find Full Text PDF

Electronegative LDL strongly induces LRP1 release from human monocytes and macrophages.

Clin Investig Arterioscler

September 2025

Cardiovascular Biochemistry, IR SANT PAU, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain. Electronic address:

Background: Electronegative LDL (LDL(-)) is a circulant modified LDL with inflammatory properties whose proportion raises in ischemic events. The soluble form of LDL receptor related protein 1 (sLRP1) increases in blood in pathological situations, including ischemic stroke. We aimed to evaluate the effect of LDL(-) on sLRP1 release from monocytes and macrophages.

View Article and Find Full Text PDF