Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study deals with the development of dexamethasone (DM)-loaded implants using ester end-capped Resomer RG 502 poly(lactic acid-co-glycolic acid) (PLGA) (502), acid end-capped Resomer RG 502H PLGA (502H), and a 502H:502 mixture (3:1) via hot melt extrusion (HME). The prepared intravitreal implants (20 and 40% DM loaded in each PLGA) were thoroughly investigated to determine the effect of different end-capped PLGA and drug loading on the long-term release profile of DM. The implants were characterized for solid-state active pharmaceutical ingredient (APIs) using DSC and SWAXS, water uptake during stability study, the crystal size of API in the implant matrix using hot-stage polarized light microscopy, and in vitro release profile. The kinetics of PLGA release was thoroughly investigated using quantitative H NMR spectroscopy. The polymorph of DM crystal was found to remain unchanged after the extrusion and stability study. However, around 3 times reduction in API particle size was observed after the HME process. The morphology and content uniformity of the RT-stored samples were found to be comparable to the initial implant samples. Interestingly, the samples (mainly 502H) stored at 40 °C and 75% RH for 30 d demonstrated marked deformation and a change in content uniformity. The rate of DM release was higher in the case of 502H samples with a higher drug loading (40% w/w). Furthermore, a simple digital in vitro DM release profile derived for the formulation containing a 3:1 ratio of 502H and 502 was comparable with the experimental release profile of the respective polymer mixture formulation. The temporal development of pores and/or voids in the course of drug dissolution, evaluated using μCT, was found to be a precursor for the PLGA release. Overall, the release profile of DM was found to be dependent on the PLGA type (independent of subtle changes in the formulation mass and diameter). However, the extent of release was found to be dependent on DM loading. Thus, the present investigation led to a thorough understanding of the physicochemical properties of different end-capped PLGAs and the underlying formulation microstructure on the release profile of a crystalline water-insoluble drug, DM, from the PLGA-based implant.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.2c00945DOI Listing

Publication Analysis

Top Keywords

release profile
28
release
11
end-capped resomer
8
thoroughly investigated
8
drug loading
8
stability study
8
vitro release
8
plga release
8
content uniformity
8
profile
7

Similar Publications

Urban-impacted river pollutant sources: WQI ranking and PMF analysis.

Environ Monit Assess

September 2025

School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.

A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.

View Article and Find Full Text PDF

Astrocytic monoamine oxidase B (MAOB)-gamma-aminobutyric acid (GABA) axis as a molecular brake on repair following spinal cord injury.

Signal Transduct Target Ther

September 2025

Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.

View Article and Find Full Text PDF

Comparative efficacy and safety of PSCA CAR-engineered Vδ1 γδ T cells for immunotherapy of pancreatic cancer.

J Immunother Cancer

September 2025

Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, California, USA

Background: γδ T cells possess unique immunological features including tissue tropism, major histocompatibility complex-independent antigen recognition, and hybrid T/natural killer cell properties that make them promising candidates for cancer immunotherapy. However, the therapeutic potential of Vδ1 γδ T cells, particularly when engineered with chimeric antigen receptors (CARs), remains underexplored in solid tumors such as pancreatic cancer (PC), largely due to their low abundance in peripheral blood and challenges in ex vivo expansion. This study aims to directly compare the preclinical safety and efficacy among CAR-engineered Vδ1 γδ T cells, Vδ2 γδ T cells, and conventional αβ T cells.

View Article and Find Full Text PDF

Michaelis-Menten kinetics of RasGAP proteins by a rapid fluorescence-based assay.

Methods

September 2025

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Pharmacology, Yale University, New Haven, CT 06510, USA; Yale Cancer Center, Yale University, New Haven, CT 06510, USA. Electronic address:

Ras small GTPases are essential for a wide range of cellular processes. These proteins cycle between the GDP-loaded and GTP-loaded states, and the actions of GTPase activating proteins (GAPs) are necessary to stimulate Ras-mediated GTP hydrolysis. Here, we provide a protocol to achieve Michaelis-Menten kinetic profiling of GAP-mediated stimulation of a small GTPase by real-time monitoring of inorganic phosphate release in vitro.

View Article and Find Full Text PDF

This study aimed to characterize, in vitro dissolution, and evaluate the release kinetics of salicylamide in capsule shells made from κ-carrageenan-HPMC. The capsule shell was prepared using the dipping method with CRG: HPMC (1:1, 1:2, 1:3) ratio, supplemented with sorbitol and antifoam silicone emulsion. Characterization was conducted using FTIR, SEM-EDX mapping, AFM, hardness, and swelling degree experiments.

View Article and Find Full Text PDF