Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, due to the developments in the textile industry, water contaminated with synthetic dyes such as methylene blue (MB) has become an environmental threat based on the possible impacts in terms of chemical and biochemical demand, which leads to disturbance in aquatic plants photosynthesis, besides their possible toxicity and carcinogenicity for humans. In this work, an adsorbent hydrogel is prepared via free radical polymerization comprising acrylic acid (PAA) as a monomer and orange peel (OP) as a natural modifier rich in OH and COOH present in its cellulose and pectin content. The resulting hydrogels were optimized in terms of the content of OP and the number of cross-linkers and characterized morphologically using Scanning electron microscopy. Furthermore, BET analysis was used to follow the variation in the porosity and in terms of the surface area of the modified hydrogel. The adsorption behavior was found to follow pseudo-second-order as a kinetic model, and Langmuir, Freundlich, and Temkin isotherm models. The combination of OP and PAA has sharply enhanced the adsorption percent of the hydrogel to reach 84% at the first 10 min of incubation with an adsorption capacity of more than 1.93 gm/gm. Due to its low value of pHPZc, the desorption of MB was efficiently performed at pH 2 using HCl, and the desorbed OP-PAA were found to be reusable up to ten times without a decrease in their efficiency. Accordingly, OP-PAA hydrogel represents a promising efficient, cost-effective, and environmentally friendly adsorbent for MB as a model cationic dye that can be applied for the treatment of contaminated waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861405PMC
http://dx.doi.org/10.3390/polym15020277DOI Listing

Publication Analysis

Top Keywords

orange peel
8
methylene blue
8
synthesis characterization
4
characterization orange
4
peel modified
4
modified hydrogels
4
hydrogels efficient
4
efficient adsorbents
4
adsorbents methylene
4
blue years
4

Similar Publications

Background: Blood orange peels represent an underutilized source of high-value flavonoids with broad bioactivities. Traditional single-extraction techniques for citrus flavonoids suffer from low efficiency due to polarity limitations, significantly restricting their industrial-scale development and application. As a result, there is an urgent need to develop green and efficient extraction processes to improve both the coverage and yield of citrus flavonoids.

View Article and Find Full Text PDF

Periodontal inflammation, such as gingivitis, involves neutrophil infiltration and elevated myeloperoxidase (MPO) activity, leading to excessive reactive oxygen species (ROS) that damage cellular structures, including proteins and lipids. In the oral cavity, oxidative stress may worsen due to local iron release from microbleeding, promoting tissue destruction and gingival recession. This study evaluated the protective effects of orange peel aqueous extract (OPE) and hesperidin (HSP) against iron-induced oxidative damage in human plasma.

View Article and Find Full Text PDF

Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers' spent grain (BSG) and orange peel (OP) without compatibilization.

View Article and Find Full Text PDF

Context: Dental caries remains a global health concern. While various prophylactic agents, including probiotics and other compounds, have been used, the search for effective natural solutions continues. Herbal products are valued for their anticariogenic properties.

View Article and Find Full Text PDF

Unlabelled: This study investigates the eco-friendly synthesis, characterization, and biological activity of selenium nanoparticles (SeNPs) incorporated into a polyvinyl alcohol/chitosan (PVA/CH) composite for antimicrobial, antioxidant, and food preservation applications. SeNPs were synthesized using orange peel extract as a reducing and stabilizing agent. Characterization through UV-Vis spectroscopy, FTIR, dynamic light scattering (DLS), TEM and zeta potential analysis confirmed the formation of stable, well-dispersed SeNPs.

View Article and Find Full Text PDF