98%
921
2 minutes
20
The applications of silver nanowires (AgNWs) are clearly relevant to their purity and morphology. Therefore, the synthesis parameters should be precisely adjusted in order to obtain AgNWs with a high aspect ratio. Consequently, controlling the reaction time versus the reaction temperature of the AgNWs is crucial to synthesize AgNWs with a high crystallinity and is important in fabricating optoelectronic devices. In this work, we tracked the morphological alterations of AgNWs during the growth process in order to determine the optimal reaction time and temperature. Thus, here, the UV-Vis absorption spectra were used to investigate how the reaction time varies with the temperature. The reaction was conducted at five different temperatures, 140-180 °C. As a result, an equation was developed to describe the relationship between them and to calculate the reaction time at any given reaction temperature. It was observed that the average diameter of the NWs was temperature-dependent and had a minimum value of 23 nm at a reaction temperature of 150 °C. A significant purification technique was conducted for the final product at a reaction temperature of 150 °C with two different speeds in the centrifuge to remove the heavy and light by-products. Based on these qualities, a AgNWs-based porous Si (AgNWs/P-Si) device was fabricated, and current-time pulsing was achieved using an ultra-violet (UV) irradiation of a 375 nm wavelength at four bias voltages of 1 V, 2 V, 3 V, and 4 V. We obtained a high level of sensitivity and detectivity with the values of 2247.49% and 2.89 × 10 Jones, respectively. The photocurrent increased from the μA range in the P-Si to the mA range in the AgNWs/P-Si photodetector due to the featured surface plasmon resonance of the AgNWs compared to the other metals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863988 | PMC |
http://dx.doi.org/10.3390/nano13020353 | DOI Listing |
J Oncol Pharm Pract
September 2025
Hematology/Oncology, Scripps Clinic, La Jolla, USA.
IntroductionDaratumumab is a therapeutic cornerstone of the management of multiple myeloma, exerting its anti-myeloma activity through targeting of the cell surface glycoprotein CD38 on plasma cells. While originally given intravenously, the subcutaneous formulation, daratumumab hyaluronidase injection (Dara SC), has been associated with non-inferior efficacy and lower infusion-related reaction rates (IRRs) in the treatment of multiple myeloma and light chain amyloidosis. A noted benefit of Dara SC is a short administration time; however, the optimal observation time post injection to ensure patient safety is unclear from the drug labeling.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
A tetrahydroxydiboron-mediated radical cyclization of unactivated alkenes under photoinduced reaction conditions was developed to synthesize ring-fused quinazolinones for the first time. The concise, mild and photocatalyst- and oxidant-free conditions, as well as the good functional group tolerance, render this protocol a green and convenient strategy for synthesizing polycyclic ring-fused quinazolinones. Mechanistic studies indicated that the process might involve a radical pathway.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
A regioselective C2-alkynylation of indoles ruthenium(II)-catalyzed C-H activation using bromoalkynes is demonstrated under both solution-phase and mechanochemical conditions. The solvent-minimized mechanochemical method delivers comparable yields with reduced reaction time and improved green metrics. Broad substrate scope, gram-scale applicability, and post-functionalization showcase the synthetic utility of this approach.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
Small
September 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.
Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.
View Article and Find Full Text PDF