A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synthesis, Photophysics and Tunable Reverse Saturable Absorption of Bis-Tridentate Iridium(III) Complexes via Modification on Diimine Ligand. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Five novel bis-tridentate Ir(III) complexes (Ir-1−Ir-5) incorporating versatile N^N^C ligands and a N^C^N ligand (1,3-di(2-pyridyl)-4,6-dimethylbenzene) were synthesized. With the combination of experimental and theoretical methods, their steady and transient state characteristics were researched scientifically. The UV-visible absorption spectra show that the broadband charge transfer absorbance of those bis-tridentate Ir(III) complexes can reach 550 nm, all of these complexes reveal the long-lasting phosphorescent emission. Because the excited-state absorption is more powerful than the ground-state absorption, a sturdy reverse saturable absorption (RSA) process can ensue in the visible and near-infrared regions when the complexes are exposed to a 532 nm laser. Therefore, the optical power limiting (OPL) effect follows the trend: Ir-5 > Ir-4 ≈ Ir-3 > Ir-2 > Ir-1. Generally speaking, the expansion of π-conjugation and the introduction of electron donating/withdrawing groups on the N^N^C ligand could effectively elevate the OPL effect. Therefore, these octahedral bis-tridentate Ir(III) complexes might be exploited as potential OPL materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864372PMC
http://dx.doi.org/10.3390/molecules28020566DOI Listing

Publication Analysis

Top Keywords

bis-tridentate iriii
12
iriii complexes
12
reverse saturable
8
saturable absorption
8
complexes
6
absorption
5
synthesis photophysics
4
photophysics tunable
4
tunable reverse
4
bis-tridentate
4

Similar Publications