98%
921
2 minutes
20
Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865445 | PMC |
http://dx.doi.org/10.3390/ijms24021432 | DOI Listing |
Environ Sci Process Impacts
September 2025
Aix Marseille Univ., CNRS, LCE, Marseille, France.
Surfactant-rich aqueous media are common in natural environments. The sea surface microlayer and sea spray droplets are good examples and are also frequently markedly enriched in organic pollutants. This study focuses on the degradation kinetics of organic pollutants initiated by the hydroxyl radical in such surfactant-rich environments.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, Brazil.
This study developed heterogeneous catalysts composed of ZnO and CeO supported on H-ZSM-5 for the direct conversion of methane (CH) and carbon dioxide (CO) into acetic acid. The acid-base and electronic properties were modulated through oxide impregnation and reduction, aiming to create active sites capable of simultaneously activating both reactants. The samples were characterized by XRD, N physisorption, HRTEM/EDS, NH-TPD, CO-TPD, TPR, FTIR, XPS, CO-DRIFTS, and TGA, and tested in a batch reactor at 300 °C and 10 bar.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFNanoscale
September 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Correction for 'Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots' by Shuang E , , 2018, , 12788-12796, https://doi.org/10.1039/C8NR03453B.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDF