98%
921
2 minutes
20
The degradation of a model agro-industrial wastewater phenolic compound (caffeic acid, CA) by a UV-A-Fenton system was investigated in this work. Experiments were carried out in order to compare batch and continuous mode. Initially, batch experiments showed that UV-A-Fenton at pH 3.0 (pH of CA solution) achieved a higher generation of HO•, leading to high CA degradation (>99.5%). The influence of different operational conditions, such as H2O2 and Fe2+ concentrations, were evaluated. The results fit a pseudo first-order (PFO) kinetic model, and a high kinetic rate of CA removal was observed, with a [CA] = 5.5 × 10−4 mol/L, [H2O2] = 2.2 × 10−3 mol/L and [Fe2+] = 1.1 × 10−4 mol/L (kCA = 0.694 min−1), with an electric energy per order (EEO) of 7.23 kWh m−3 order−1. Under the same operational conditions, experiments in continuous mode were performed under different flow rates. The results showed that CA achieved a steady state with higher space-times (θ = 0.04) in comparison to dissolved organic carbon (DOC) removal (θ = 0−0.020). The results showed that by increasing the flow rate (F) from 1 to 4 mL min−1, the CA and DOC removal rate increased significantly (kCA = 0.468 min−1; kDOC = 0.00896 min−1). It is concluded that continuous modes are advantageous systems that can be adapted to wastewater treatment plants for the treatment of real agro-industrial wastewaters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858821 | PMC |
http://dx.doi.org/10.3390/ijerph20021276 | DOI Listing |
J Histotechnol
September 2025
Department of Pathology, Peking University Third Hospital, Beijing, China.
Amyloidosis encompasses a spectrum of rare disorders characterized by extracellular amyloid deposition. Achieving an accurate early diagnosis of systemic amyloidosis necessitates biopsy-specific pathological evaluation. Formalin-fixed, paraffin-embedded liver biopsy specimens were examined using Congo red staining, electron microscopy, immunohistochemistry (IHC), immunofluorescence, and Congo red-assisted laser microdissection with mass spectrometry (LMD/MS).
View Article and Find Full Text PDFThis article considers the calls for police reform and the continuation of police brutality to be twinning modes of policing within Kenya's broader counterterrorism and preventing and countering violent extremism (P/CVE) architecture. Rather than seeing ongoing police brutality as a failure of, or at odds with, calls for police reform, we argue that what appears to be a paradox is actually indicative of a dialectic central to civil counterinsurgency - a dialectic comprising what we call 'coercive compliance' and 'abject coercion'. Based on extensive field research in Kenya, this article centers the institution of the police as an integral mode of P/CVE-as-counterinsurgency to analyze various manifestations of police power, including international compliance vis-a-vis police reform, police brutality, and community engagement.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
September 2025
Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, Massachusetts, USA.
Background: Examining youth before engagement in risky behaviors may help identify neurobiological signatures that prospectively predict susceptibility to initiating and escalating alcohol and other substance use. Given that frontal and medial temporal (e.g.
View Article and Find Full Text PDFDiabet Med
September 2025
Edinburgh Centre for Endocrinology & Diabetes, NHS Lothian, Edinburgh, UK.
Aims: This study aimed to assess the impact of the Omnipod 5 automated insulin delivery (AID) system on continuous glucose monitoring (CGM) metrics, HbA1c, and weight in a real-world setting. Additionally, independent predictors of glycaemic response were assessed.
Methods: Observational analysis of adults with type 1 diabetes using Omnipod 5 (n = 353).
Bioresour Technol
September 2025
State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technol
Carbon dioxide enhanced oil recovery (CO-EOR) is widely used for carbon capture, utilization, and storage in Chinese oilfields, but part of injected CO returns with produced oil, reducing carbon-reduction efficiency. Bioconverting this CO to methane energy by methanogens benefits the technology, yet on-site high-efficiency conversion meeting natural-gas grid standards remains challenging. This study used a newly-designed triple-tank bioreactor to investigate CO-to-methane conversion and methanogenic kinetics of Methanococcus maripaludis.
View Article and Find Full Text PDF