A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Bionic High-Cushioning Midsole of Shoes Inspired by Functional Characteristics of Ostrich Foot. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The sole is a key component of the interaction between foot and ground in daily activities, and its cushioning performance plays a crucial role in protecting the joints of lower limbs from impact injuries. Based on the excellent cushioning performance of the ostrich foot and inspired by the structure and material assembly features of the ostrich foot's metatarsophalangeal skeletal-tendon and the ostrich toe pad-fascia, a functional bionic cushioning unit for the midsole (including the forefoot and heel) area of athletic shoes was designed using engineering bionic technology. The bionic cushioning unit was then processed based on the bionic design model, and the shoe soles were tested with six impact energies ranging from 3.3 J to 11.6 J for a drop hammer impact and compared with the conventional control sole of the same size. The results indicated that the bionic forefoot area absorbed 9.83-34.95% more impact and 10.65-43.84% more energy than the conventional control forefoot area, while the bionic heel area absorbed 26.34-44.29% more impact and 28.1-51.29% more energy than the conventional control heel area when the controlled impact energy varied from 3.3 J to 11.6 J. The cushioning performance of the bionic cushioning sole was generally better than that of the conventional control sole, and the cushioning and energy-absorption performances of the heel bionic cushioning unit were better than those of the forefoot bionic cushioning unit. This study provides innovative reference and research ideas for the design and development of sports shoes with good cushioning performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854612PMC
http://dx.doi.org/10.3390/bioengineering10010001DOI Listing

Publication Analysis

Top Keywords

bionic cushioning
20
cushioning performance
16
cushioning unit
16
conventional control
16
heel area
12
bionic
10
cushioning
10
ostrich foot
8
control sole
8
forefoot area
8

Similar Publications