Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease, characterized by motor dysfunction and abnormal energy metabolism. Equilibrative nucleoside transporter 1 (ENT1) and ENT2 are the major nucleoside transporters in cellular plasma membrane of the brain. Yet, unlike ENT1 whose function has been better investigated in HD, the role of ENT2 in HD remains unclear. The present study aimed to investigate the impacts of ENT2 deletion on HD using a well-characterized mouse model (R6/2). Microarray analysis, quantitative real-time polymerase chain reaction, and immunostaining of ENT2 in postmortem human brain tissues were conducted. R6/2 mice with or without genetic deletion of ENT2 were generated. Motor functions, including rotarod performance and limb-clasping test, were examined at the age of 7 to 12 weeks. Biochemical changes were evaluated by immunofluorescence staining and immunoblotting at the age of 12 to 13 weeks. In regard to energy metabolism, levels of striatal metabolites were determined by liquid chromatography coupled with the fluorescence detector or quadrupole time-of-flight mass spectrometer. Mitochondrial bioenergetics was assessed by the Seahorse assay. The results showed that ENT2 protein was detected in the neurons and astrocytes of human brains and the levels in the postmortem brain tended to be higher in patients with HD. In mice, ENT2 deletion did not alter the phenotype of the non-HD controls. Yet, ENT2 deletion deteriorated motor function and increased the number of aggregated mutant huntingtin in the striatum of R6/2 mice. Notably, disturbed energy metabolism with decreased ATP level and increased AMP/ ATP ratio was observed in R6/2-Ent2 mice, compared with R6/2-Ent2 mice, resulting in the activation of AMPK in the late disease stage. Furthermore, ENT2 deletion reduced the NAD/NADH ratio and impaired mitochondrial respiration in the striatum of R6/2 mice. Taken together, these findings indicate the crucial role of ENT2 in energy homeostasis, in which ENT2 deletion further impairs mitochondrial bioenergetics and deteriorates motor function in R6/2 mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2023.106004DOI Listing

Publication Analysis

Top Keywords

ent2 deletion
20
energy metabolism
16
r6/2 mice
16
ent2
11
equilibrative nucleoside
8
nucleoside transporter
8
huntington's disease
8
role ent2
8
mitochondrial bioenergetics
8
motor function
8

Similar Publications

detect and respond to mating pheromone using a G-Protein Coupled Receptor signaling pathway to initiate polarized growth toward mating partners. Septins form structures at the base of the mating projection to control morphogenesis in a manner that is dependent upon desensitization of the large G-protein Gpa1. We sought to identify the pathway through which Gpa1 regulates septin organization using gene deletions in the presence of a hyperactive Gpa1 mutant, live cell imaging, and computational approaches.

View Article and Find Full Text PDF

40 Hz light flickering promotes sleep through cortical adenosine signaling.

Cell Res

March 2024

The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Flickering light stimulation has emerged as a promising non-invasive neuromodulation strategy to alleviate neuropsychiatric disorders. However, the lack of a neurochemical underpinning has hampered its therapeutic development. Here, we demonstrate that light flickering triggered an immediate and sustained increase (up to 3 h after flickering) in extracellular adenosine levels in the primary visual cortex (V1) and other brain regions, as a function of light frequency and intensity, with maximal effects observed at 40 Hz frequency and 4000 lux.

View Article and Find Full Text PDF

The endocytic and secretory pathways of the fungal pathogen are fundamental to various key cellular processes such as cell growth, cell wall integrity, protein secretion, hyphal formation, and pathogenesis. Our previous studies focused on several candidate genes involved in early endocytosis, including and , that play crucial roles in such processes. However, much remains to be discovered about other endocytosis-related genes and their contributions toward secretion and virulence.

View Article and Find Full Text PDF

Background: Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion.

View Article and Find Full Text PDF

The septin cytoskeleton plays a key role in the morphogenesis of the yeast mating projection, forming structures at the base of the projection. The yeast mating response uses the G-protein coupled receptor (GPCR), Ste2, to detect mating pheromone and initiate mating projection morphogenesis. Desensitization of the Gα, Gpa1, by the Regulator of G-protein Signaling (RGS), Sst2, is required for proper septin organization and morphogenesis.

View Article and Find Full Text PDF