Intervertebral Disc Tissue Engineering Using Additive Manufacturing.

Gels

Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intervertebral disc (IVD) degeneration is one of the major causes of lower back pain, a common health condition that greatly affects the quality of life. With an increasing elderly population and changes in lifestyle, there exists a high demand for novel treatment strategies for damaged IVDs. Researchers have investigated IVD tissue engineering (TE) as a way to restore biological and mechanical functions by regenerating or replacing damaged discs using scaffolds with suitable cells. These scaffolds can be constructed using material extrusion additive manufacturing (AM), a technique used to build three-dimensional (3D), custom discs utilising computer-aided design (CAD). Structural geometry can be controlled via the manipulation of printing parameters, material selection, temperature, and various other processing parameters. To date, there are no clinically relevant TE-IVDs available. In this review, advances in AM-based approaches for IVD TE are briefly discussed in order to achieve a better understanding of the requirements needed to obtain more effective, and ultimately clinically relevant, IVD TE constructs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857857PMC
http://dx.doi.org/10.3390/gels9010025DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
8
tissue engineering
8
additive manufacturing
8
clinically relevant
8
disc tissue
4
engineering additive
4
manufacturing intervertebral
4
ivd
4
disc ivd
4
ivd degeneration
4

Similar Publications

Cell and Hydrogel-Integrated Therapies for Intervertebral Disc Regeneration.

Adv Healthc Mater

September 2025

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a prevalent spinal condition frequently associated with pain and motor impairment, imposing a substantial burden on quality of life. Despite extensive investigations into the genetic predisposition to IDD, the precise pathogenic genes and molecular pathways involved remain inadequately characterized, underscoring the need for continued research to clarify its genetic underpinnings.

Methods: This study leveraged IDD data from the FinnGen R12 cohort and integrated expression quantitative trait loci data across 49 tissues from the Genotype-Tissue Expression version 8 database to perform a cross-tissue transcriptome-wide association study (TWAS).

View Article and Find Full Text PDF

Lower back pain caused by intervertebral disk degeneration (IDD) is a common problem among middle-aged and older adults. We aimed to identify novel diagnostic biomarkers of IDD and analyze the potential association between key genes and immune cell infiltration. We screened differentially expressed genes (DEGs) related to IDD and gene sets associated with mitochondrial energy metabolism using the Gene Expression Omnibus and GeneCards databases, respectively.

View Article and Find Full Text PDF

Lycium barbarum alleviates oxidative stress-induced ferroptosis and enhances mitophagy in intervertebral disc degeneration.

Cell Signal

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Molecular Pharmacology Research Center, School of Pharmaceutical Sciences; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China. Electronic address:

Lycium barbarum is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions, such as antioxidation, neuroprotection, and immune modulation. The therapeutic effect of Lycium barbarum on intervertebral disc degeneration (IVDD) has not been conclusively established. In our study, we investigated the mechanisms of Lycium barbarum extract (LBE) using Network pharmacology and bioinformatic analyses.

View Article and Find Full Text PDF

Pug dogs are predisposed to thoracolumbar myelopathy associated with vertebral articular process dysplasia, suggesting a biomechanical etiology. While surgery is commonly pursued, long-term outcomes remain poorly defined. This retrospective descriptive case series reports on seven Pug dogs that underwent surgical treatment for thoracolumbar myelopathy and were followed up for at least 7 years postoperatively.

View Article and Find Full Text PDF