Graph attention convolutional neural network model for chemical poisoning of honey bees' prediction.

Sci Bull (Beijing)

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; Collaborative

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate prediction of chemical poisoning of honey bees is a challenging task owing to a lack of understanding of chemical toxicity and introspection. Deep learning (DL) shows potential utility for general and highly variable tasks across fields. Here, we developed a new DL model of deep graph attention convolutional neural networks (GACNN) with the combination of undirected graph (UG) and attention convolutional neural networks (ACNN) to accurately classify chemical poisoning of honey bees. We used a training dataset of 720 pesticides and an external validation dataset of 90 pesticides, which is one order of magnitude larger than the previous datasets. We tested its performance in two ways: poisonous versus non-poisonous and GACNN versus other frequently-used machine learning models. The first case represents the accuracy in identifying bee poisonous chemicals. The second represents performance advantages. The GACNN achieved ~6% higher performance for predicting toxic samples and more stable with ~7% Matthews Correlation Coefficient (MCC) higher compared to all tested models, demonstrating GACNN is capable of accurately classifying chemicals and has considerable potential in practical applications. In addition, we also summarized and evaluated the mechanisms underlying the response of honey bees to chemical exposure based on the mapping of molecular similarity. Moreover, our cloud platform (http://beetox.cn) of this model provides low-cost universal access to information, which could vitally enhance environmental risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2020.04.006DOI Listing

Publication Analysis

Top Keywords

graph attention
12
attention convolutional
12
convolutional neural
12
chemical poisoning
12
poisoning honey
12
honey bees
12
neural networks
8
chemical
5
neural network
4
network model
4

Similar Publications

Bipolar disorder (BD) is a debilitating mental illness characterized by significant mood swings, posing a substantial challenge for accurate diagnosis due to its clinical complexity. This paper presents CS2former, a novel approach leveraging a dual channel-spatial feature extraction module within a Transformer model to diagnose BD from resting-state functional MRI (Rs-fMRI) and T1-weighted MRI (T1w-MRI) data. CS2former employs a Channel-2D Spatial Feature Aggregation Module to decouple channel and spatial information from Rs-fMRI, while a Channel-3D Spatial Attention Module with Synchronized Attention Module (SAM) concurrently computes attention for T1w-MRI feature maps.

View Article and Find Full Text PDF

Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.

View Article and Find Full Text PDF

Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.

View Article and Find Full Text PDF

Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.

Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.

View Article and Find Full Text PDF

A time-frequency graph fusion framework for Major Depressive Disorder diagnosis in multi-site rsfMRI data.

J Affect Disord

September 2025

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China. Electronic address:

Major Depressive Disorder (MDD) poses a significant global health threat, impairing individual functioning and increasing socioeconomic burden. Accurate diagnosis is crucial for improving treatment outcomes. This study proposes Time-Frequency Text-Attributed DeepWalk (TF-TADW), a framework for MDD classification using resting-state functional MRI data.

View Article and Find Full Text PDF