98%
921
2 minutes
20
Broadly, the oxygen evolution reaction (OER) has been deeply understood as a significant part of energy conversion and storage. Nevertheless, the anions in the OER catalysts have been neglected for various reasons such as inactive sites, dissolution, and oxidation, amongst others. Herein, we applied a model catalyst s-Ni(OH) to track the anionic behavior in the catalyst during the electrochemical process to fill this gap. The advanced operando synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy, synchrotron radiation photoelectron spectroscopy (SRPES) depth detection and differential X-ray absorption fine structure (Δ-XAFS) spectrum jointly point out that some oxidized sulfur species (SO) will self-optimize new Ni-S bonds during OER process. Such amazing anionic self-optimization (ASO) behavior has never been observed in the OER process. Subsequently, the optimization-derived component shows a significantly improved electrocatalytic performance (activity, stability, etc.) compared to reference catalyst Ni(OH). Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst, and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER, respectively. This work demonstrates the vital role of anions in the electrochemical process, which will open up new perspectives for understanding OER and provide some new ideas in related fields (especially catalysis and chemistry).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2020.09.037 | DOI Listing |
Nanoscale
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
The lattice oxygen mechanism (LOM) of the oxygen evolution reaction (OER) offers significant kinetic advantages over the adsorbed oxygen mechanism. Anion intercalation induces the LOM in NiOOH by enhancing the covalency of lattice oxygen through the modulation of the metal-oxygen electronic state. The relationships between doping mechanisms, such as the size and valence state of anions and the kinetics of the OER, have been clarified.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.
Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.
View Article and Find Full Text PDF