Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sucrose gradient centrifugation is a very useful technique for isolating specific membrane types based on their size and density. This is especially useful for detecting fatty acids and lipid molecules that are targeted to specialized membranes. Without fractionation, these types of molecules could be below the levels of detection after being diluted out by the more abundant lipid molecules with a more ubiquitous distribution throughout the various cell membranes. Isolation of specific membrane types where these lipids are concentrated allows for their detection and analysis. We describe herein our synaptic membrane isolation protocol that produces excellent yield and clear resolution of five major membrane fractions from a starting neural tissue homogenate: P1 (nuclear), P2 (cytoskeletal), P3 (neurosynaptosomal), PSD (post-synaptic densities), and SV (synaptic vesicle).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2966-6_2DOI Listing

Publication Analysis

Top Keywords

sucrose gradient
8
gradient centrifugation
8
specific membrane
8
membrane types
8
lipid molecules
8
isolation neuronal
4
neuronal synaptic
4
synaptic membranes
4
membranes sucrose
4
centrifugation sucrose
4

Similar Publications

Allosteric regulation of the Golgi-localized PPM1H phosphatase by Rab GTPases modulates LRRK2 substrate dephosphorylation in Parkinson's disease.

J Biol Chem

September 2025

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, San Francisco, CA, United States. Electronic address:

PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated, Rab GTPase phosphorylation. We showed previously that PPM1H relies on an N-terminal amphipathic helix for Golgi membrane localization and this helix enables PPM1H to associate with liposomes in vitro; binding to highly curved liposomes activates PPM1H's phosphatase activity. We show here that PPM1H also contains an allosteric binding site for its non-phosphorylated reaction products, Rab8A and Rab10.

View Article and Find Full Text PDF

Flotillin-binding protein networks serve as scaffolds, organizing lipid rafts and facilitating the recruitment of other raft-associated proteins such as receptors and downstream signaling molecules to regulate various intracellular pathways, including those involved in cell proliferation, migration, and endocytosis. Flotillins belong to the SPFH (stomatin/prohibitin/flotillin/HflK/C) domain-containing protein family, also known as the prohibitin homology (PHB) domain, which enables membrane association via acylation and hydrophobic hairpin motifs that anchor them to the inner leaflet of the plasma membrane. The functional diversity of flotillin proteins within membrane microdomains primarily stems from their interactions with other proteins.

View Article and Find Full Text PDF

Many essential cellular processes require RNA to interact with protein(s) to form ribonucleic protein complexes (RNPs). For example, all cellular proteins are produced by the ribosome - a large and stable RNP, gene splicing requires a choreography of numerous small and large RNPs, even the replication of telomeric DNA requires an RNP. All these examples are stable RNPs that exhibit specific sedimentation rates (e.

View Article and Find Full Text PDF

Objectives: Cardiac troponins (cTn) are used to detect and quantify acute cardiomyocyte injury. In patients presenting with symptoms that could indicate myocarditis, elevated cTn concentrations typically mandate cardiac catheterization and heart muscle biopsy or cardiac magnetic resonance imaging (CMR). Accordingly, increased cTn levels due to macrotroponin - a complex between patient anti-troponin autoantibodies and cTn - could lead to unnecessary and potentially harmful interventions.

View Article and Find Full Text PDF

Preclinical MRI of proinflammatory epicardial adipose tissue: Accelerated methods for simultaneous fatty acid composition and relaxation parameter mapping with relationships to tissue biomarkers.

J Cardiovasc Magn Reson

August 2025

Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA; Radiology, University of Virginia, Charlottesville, Virginia, USA. Electronic address:

Background: Epicardial adipose tissue (EAT) plays a central role in metabolic heart disease through local inflammatory signaling. In obesity, EAT undergoes pathological remodeling marked by increased adipocyte size, saturated fatty acids (SFAs), macrophage infiltration, and inflammatory cytokine secretion. Proton density fat fraction (PDFF), T, and the fatty acid composition (FAC) (the amount of SFAs, monounsaturated fatty acids [MUFAs], and polyunsaturated fatty acids [PUFAs]) are promising metrics of EAT quality, yet their role as biomarkers of proinflammatory EAT has not been established.

View Article and Find Full Text PDF