98%
921
2 minutes
20
Most structural and evolutionary properties of galaxies strongly rely on the stellar initial mass function (IMF), namely the distribution of the stellar mass formed in each episode of star formation. The IMF shapes the stellar population in all stellar systems, and so has become one of the most fundamental concepts of modern astronomy. Both constant and variable IMFs across different environments have been claimed despite a large number of theoretical and observational efforts. However, the measurement of the IMF in Galactic stellar populations has been limited by the relatively small number of photometrically observed stars, leading to high uncertainties. Here we report a star-counting result based on approximately 93,000 spectroscopically observed M-dwarf stars, an order of magnitude more than previous studies, in the 100-300 parsec solar neighbourhood. We find unambiguous evidence of a variable IMF that depends on both metallicity and stellar age. Specifically, the stellar population formed at early times contains fewer low-mass stars compared with the canonical IMF, independent of stellar metallicities. In more recent times, however, the proportion of low-mass stars increases with stellar metallicity. The variable abundance of low-mass stars in our Milky Way establishes a powerful benchmark for models of star formation and can heavily affect results in Galactic chemical-enrichment modelling, mass estimation of galaxies and planet-formation efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-022-05488-1 | DOI Listing |
Nat Astron
June 2025
Space Research Institute, Austrian Academy of Sciences, Graz, Austria.
The discovery of many low-mass exoplanets, including several planets within the habitable zone of their host stars, has led to the question of which kind of atmosphere surrounds them. Recent exoplanet detections have revealed the existence of a large population of low-mass planets (<3 ) with H-dominated atmospheres that must have been accreted from the protoplanetary disk. As the gas disk usually has an ~10% fraction of helium, we model the possible enrichment of the primordial He fraction in the atmosphere of planets with mass between 0.
View Article and Find Full Text PDFNat Astron
June 2025
Astrobiology Research Unit, Université de Liège, Liège, Belgium.
Planet formation models indicate that the formation of giant planets is substantially harder around low-mass stars due to the scaling of protoplanetary disc masses with stellar mass. The discovery of giant planets orbiting such low-mass stars thus imposes strong constraints on giant planet formation processes. Here we report the discovery of a transiting giant planet orbiting a 0.
View Article and Find Full Text PDFNature
June 2025
ATNF, CSIRO, Space and Astronomy, Bentley, Western Australia, Australia.
Recently, a class of long-period radio transients (LPTs) has been discovered, exhibiting emission thousands of times longer than radio pulsars. These findings, enabled by advances in wide-field radio surveys, challenge existing models of rotationally powered pulsars. Proposed models include highly magnetized neutron stars, white-dwarf pulsars and white-dwarf binary systems with low-mass companions.
View Article and Find Full Text PDFPLoS Comput Biol
March 2025
Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom.
Oxygenic photosynthesis is responsible for nearly all biomass production on Earth, and may have been a prerequisite for establishing a complex biosphere rich in multicellular life. Life on Earth has evolved to perform photosynthesis in a wide range of light environments, but with a common basic architecture of a light-harvesting antenna system coupled to a photochemical reaction centre. Using a generalized thermodynamic model of light-harvesting, coupled with an evolutionary algorithm, we predict the type of light-harvesting structures that might evolve in light of different intensities and spectral profiles.
View Article and Find Full Text PDFNature
November 2024
Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA, USA.
Fast radio bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favour highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown.
View Article and Find Full Text PDF