98%
921
2 minutes
20
. Noninvasive focal stimulation of deep brain regions has been a major goal for neuroscience and neuromodulation in the past three decades. Transcranial magnetic stimulation (TMS), for instance, cannot target deep regions in the brain without activating the overlying tissues and has poor spatial resolution. In this manuscript, we propose a new concept that relies on the temporal interference (TI) of two high-frequency magnetic fields generated by two electromagnetic solenoids.. To illustrate the concept, custom solenoids were fabricated and optimized to generate temporal interfering electric fields for rodent brain stimulation. C-Fos expression was used to track neuronal activation.. C-Fos expression was not present in regions impacted by only one high-frequency magnetic field indicating ineffective recruitment of neural activity in non-target regions. In contrast, regions impacted by two fields that interfere to create a low-frequency envelope display a strong increase in c-Fos expression.. Therefore, this magnetic temporal interference solenoid-based system provides a framework to perform further stimulation studies that would investigate the advantages it could bring over conventional TMS systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/acb015 | DOI Listing |
Biol Invasions
September 2025
Ashoka Trust for Research in Ecology and the Environment, Bangalore, Karnataka India.
Unlabelled: Whilst the impacts of individual invasive species are relatively well studied, the combined effects of both plant and animal invasive species on multispecies assemblages are poorly understood. We studied the impact of two invasive species-the mesquite tree, and free-ranging dog, on a guild of native mesocarnivores in the human-dominated grasslands of the Thar desert. We found that the mesquite had varying effects on the mesocarnivore guild, benefiting generalist species such as the golden jackal and jungle cat , while negatively affecting open habitat specialist species such as Indian desert fox , Indian fox , and desert cat .
View Article and Find Full Text PDFCurr Biol
August 2025
Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, USA.
Across various types of learning and memory, when a new training session follows a previous one after a certain temporal interval, the previously acquired learning can be disrupted-an effect known as retrograde interference (RI) or catastrophic forgetting. This disruption is thought to result from disrupting interactions between the learning of the first-trained task and the learning of the second-trained task while the former has not yet stabilized. Such destructive interactions have been considered characteristic not only of RI but also of related phenomena.
View Article and Find Full Text PDFWorld Neurosurg
September 2025
Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
Background: Frontal patient state index (PSI) monitoring is impractical during frontal lobe tumor resection due to surgical field interference. No validated alternative monitoring positions exist currently. This study evaluated the agreement between standard frontal and experimental occipital PSI monitoring.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2025
Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa cause severe vision impairment, while current electrical stimulation therapies are limited by poor spatial targeting precision. As a promising non-invasive alternative, the efficacy of temporal interference stimulation (TIS) for retinal targeting depends on optimized multi-electrode parameters. This study reconstructed a whole-head finite element model with detailed ocular structures and applied reinforcement learning (RL)-based multi-channel electrode parameter optimization to retinal stimulation.
View Article and Find Full Text PDFChem Sci
August 2025
School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
Fluorescence imaging has become an indispensable tool in modern biology, enabling the visualisation of dynamic molecular processes with spatial and temporal precision. Traditional strategies rely heavily on the conjugation of large, extrinsic fluorophores, such as green fluorscent protein or organic dyes, through linkers to proteins or peptides of interest. While sometimes effective, these bulky labels can interfere with native protein structure, function, and interactions, limiting their utility in studying sensitive or compact biological systems.
View Article and Find Full Text PDF